From a2a40bcd0d8275e19c46e9cc06ee994d8839b98d Mon Sep 17 00:00:00 2001 From: Matthias Vogler <60004995+ayylemao@users.noreply.github.com> Date: Tue, 31 Dec 2024 02:33:06 +0100 Subject: [PATCH] [Model][LoRA]LoRA support added for MolmoForCausalLM (#11439) Signed-off-by: Matthias Vogler Signed-off-by: Jee Jee Li Co-authored-by: Matthias Vogler Co-authored-by: Jee Jee Li --- docs/source/models/supported_models.md | 2 +- vllm/model_executor/models/molmo.py | 45 ++++++++++++++++++++++++-- 2 files changed, 43 insertions(+), 4 deletions(-) diff --git a/docs/source/models/supported_models.md b/docs/source/models/supported_models.md index 518505abeb2a9..613343281464c 100644 --- a/docs/source/models/supported_models.md +++ b/docs/source/models/supported_models.md @@ -666,7 +666,7 @@ See [this page](#generative-models) for more information on how to use generativ - Molmo - T + I - `allenai/Molmo-7B-D-0924`, `allenai/Molmo-72B-0924`, etc. - - + - ✅︎ - ✅︎ - ✅︎ * - `NVLM_D_Model` diff --git a/vllm/model_executor/models/molmo.py b/vllm/model_executor/models/molmo.py index 5d52d2c3e6b48..cc25be9f5b6a9 100644 --- a/vllm/model_executor/models/molmo.py +++ b/vllm/model_executor/models/molmo.py @@ -36,6 +36,7 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader +from vllm.model_executor.models.module_mapping import MultiModelKeys from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs from vllm.multimodal.inputs import NestedTensors, PlaceholderRange from vllm.multimodal.utils import cached_get_tokenizer @@ -43,7 +44,7 @@ SequenceData) from vllm.transformers_utils.processor import get_processor -from .interfaces import SupportsMultiModal, SupportsPP +from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, merge_multimodal_embeddings) @@ -1161,8 +1162,8 @@ def input_processor_for_molmo(ctx: InputContext, inputs: DecoderOnlyInputs): @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_molmo_image_tokens) @INPUT_REGISTRY.register_dummy_data(dummy_data_for_molmo) @INPUT_REGISTRY.register_input_processor(input_processor_for_molmo) -class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP): - +class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP, + SupportsLoRA): hf_to_vllm_mapper = WeightsMapper( orig_to_new_substr={ # vision backbone mapping @@ -1191,6 +1192,32 @@ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP): }, ) + packed_modules_mapping = { + "qkv_proj": ["qkv_proj"], + "gate_up_proj": ["gate_up_proj"], # language model + "merged_linear": ["gate_proj", "up_proj"] # image_projector + } + + # LoRA specific attributes + supported_lora_modules = [ + # language model + "qkv_proj", + "o_proj", + "gate_up_proj", + "down_proj", # same name with image_projector + # vision tower + "wq", + "wk", + "wv", + "wo", + "w1", + "w2", + # image_projector + "merged_linear", + ] + embedding_modules = {} + embedding_padding_modules = [] + # BitandBytes specific attributes bitsandbytes_stacked_params_mapping = { "gate_proj": ("merged_linear", 0), @@ -1202,8 +1229,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config + lora_config = vllm_config.lora_config self.config = config self.multimodal_config = multimodal_config + self.lora_config = lora_config vision_config = VisionBackboneConfig() self.vision_backbone = MolmoVisionBackbone(config, vision_config, @@ -1377,6 +1406,16 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): weights = _get_weights_with_merged_embedding(weights) return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper) + def get_mm_mapping(self) -> MultiModelKeys: + """ + Get the module prefix in multimodal models + """ + return MultiModelKeys.from_string_field( + language_model="model", + connector="vision_backbone.image_projector", + tower_model="vision_backbone", + ) + def _get_weights_with_merged_embedding( weights: Iterable[Tuple[str, torch.Tensor]]