From 995a148575aaacc7889ff0d29a96195c329422ab Mon Sep 17 00:00:00 2001 From: wangxiyuan Date: Mon, 2 Dec 2024 12:14:45 +0800 Subject: [PATCH] [doc]Update config docstring (#10732) Signed-off-by: wangxiyuan --- vllm/config.py | 13 ++++++++++++- 1 file changed, 12 insertions(+), 1 deletion(-) diff --git a/vllm/config.py b/vllm/config.py index 5d9e2766c7faa..510bd81d66217 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -91,6 +91,8 @@ class ModelConfig: the default version. max_model_len: Maximum length of a sequence (including prompt and output). If None, will be derived from the model. + spec_target_max_model_len: Specify the the maximum length for spec + decoding draft models. quantization: Quantization method that was used to quantize the model weights. If None, we assume the model weights are not quantized. quantization_param_path: Path to JSON file containing scaling factors. @@ -107,6 +109,7 @@ class ModelConfig: to eager mode. Additionally for encoder-decoder models, if the sequence length of the encoder input is larger than this, we fall back to the eager mode. + max_logprobs: Maximum number of log probabilities. Defaults to 20. disable_sliding_window: Whether to disable sliding window. If True, we will disable the sliding window functionality of the model. If the model does not support sliding window, this argument is @@ -119,6 +122,8 @@ class ModelConfig: the model name will be the same as `model`. limit_mm_per_prompt: Maximum number of data items per modality per prompt. Only applicable for multimodal models. + use_async_output_proc: Whether to use async output processor. + Defaults to True. config_format: The config format which shall be loaded. Defaults to 'auto' which defaults to 'hf'. hf_overrides: If a dictionary, contains arguments to be forwarded to the @@ -130,7 +135,7 @@ class ModelConfig: override default neuron config that are specific to Neuron devices, this argument will be used to configure the neuron config that can not be gathered from the vllm arguments. - override_pooling_config: Initialize non default pooling config or + override_pooler_config: Initialize non default pooling config or override default pooling config for the embedding model. """ @@ -734,8 +739,13 @@ class CacheConfig: vLLM execution. swap_space: Size of the CPU swap space per GPU (in GiB). cache_dtype: Data type for kv cache storage. + is_attention_free: Whether the model is attention-free. num_gpu_blocks_override: Number of GPU blocks to use. This overrides the profiled num_gpu_blocks if specified. Does nothing if None. + sliding_window: Sliding window size for the KV cache. Can not work with + prefix caching enabled. + enable_prefix_caching: Whether to enable prefix caching. + cpu_offload_gb: Size of the CPU offload buffer in GiB. """ def __init__( @@ -904,6 +914,7 @@ class LoadConfig: "tensorizer" will use CoreWeave's tensorizer library for fast weight loading. "bitsandbytes" will load nf4 type weights. + model_loader_extra_config: The extra config for the model loader. ignore_patterns: The list of patterns to ignore when loading the model. Default to "original/**/*" to avoid repeated loading of llama's checkpoints.