-
Notifications
You must be signed in to change notification settings - Fork 14
/
atomic.c.v
215 lines (183 loc) · 6.85 KB
/
atomic.c.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright(C) 2021 Lars Pontoppidan. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module sdl
//
// SDL_atomic.h
//
// Atomic operations.
//
// IMPORTANT:
// If you are not an expert in concurrent lockless programming, you should
// only be using the atomic lock and reference counting functions in this
// file. In all other cases you should be protecting your data structures
// with full mutexes.
//
// The list of "safe" functions to use are:
// SDL_AtomicLock()
// SDL_AtomicUnlock()
// SDL_AtomicIncRef()
// SDL_AtomicDecRef()
//
// Seriously, here be dragons!
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// You can find out a little more about lockless programming and the
// subtle issues that can arise here:
// http://msdn.microsoft.com/en-us/library/ee418650%28v=vs.85%29.aspx
//
// There's also lots of good information here:
// http://www.1024cores.net/home/lock-free-algorithms
// http://preshing.com/
//
// These operations may or may not actually be implemented using
// processor specific atomic operations. When possible they are
// implemented as true processor specific atomic operations. When that
// is not possible the are implemented using locks that *do* use the
// available atomic operations.
//
// All of the atomic operations that modify memory are full memory barriers.
// SDL AtomicLock
//
// The atomic locks are efficient spinlocks using CPU instructions,
// but are vulnerable to starvation and can spin forever if a thread
// holding a lock has been terminated. For this reason you should
// minimize the code executed inside an atomic lock and never do
// expensive things like API or system calls while holding them.
//
// The atomic locks are not safe to lock recursively.
//
// Porting Note:
// The spin lock functions and type are required and can not be
// emulated because they are used in the atomic emulation code.
// `typedef int SDL_SpinLock;`
// SpinLock is C.SDL_SpinLock
pub type SpinLock = int
fn C.SDL_AtomicTryLock(lock_ &C.SDL_SpinLock) bool
// atomic_try_lock tries to lock a spin lock by setting it to a non-zero value.
//
// `lock_` points to the lock.
//
// returns SDL_TRUE if the lock succeeded, SDL_FALSE if the lock is already held.
pub fn atomic_try_lock(lock_ &SpinLock) bool {
return unsafe { C.SDL_AtomicTryLock(&C.SDL_SpinLock(lock_)) }
}
fn C.SDL_AtomicLock(lock_ &C.SDL_SpinLock)
// atomic_lock locks a spin lock by setting it to a non-zero value.
//
// `lock_` points to the lock.
pub fn atomic_lock(lock_ &SpinLock) {
unsafe { C.SDL_AtomicLock(&C.SDL_SpinLock(lock_)) }
}
fn C.SDL_AtomicUnlock(lock_ &C.SDL_SpinLock)
// atomic_unlock unlocks a spin lock by setting it to 0. Always returns immediately
//
// `lock_` Points to the lock.
pub fn atomic_unlock(lock_ &SpinLock) {
unsafe { C.SDL_AtomicUnlock(&C.SDL_SpinLock(lock_)) }
}
// Memory barriers are designed to prevent reads and writes from being
// reordered by the compiler and being seen out of order on multi-core CPUs.
//
// A typical pattern would be for thread A to write some data and a flag,
// and for thread B to read the flag and get the data. In this case you
// would insert a release barrier between writing the data and the flag,
// guaranteeing that the data write completes no later than the flag is
// written, and you would insert an acquire barrier between reading the
// flag and reading the data, to ensure that all the reads associated
// with the flag have completed.
//
// In this pattern you should always see a release barrier paired with
// an acquire barrier and you should gate the data reads/writes with a
// single flag variable.
//
// For more information on these semantics, take a look at the blog post:
// http://preshing.com/20120913/acquire-and-release-semantics
fn C.SDL_MemoryBarrierReleaseFunction()
pub fn memory_barrier_release_function() {
C.SDL_MemoryBarrierReleaseFunction()
}
fn C.SDL_MemoryBarrierAcquireFunction()
pub fn memory_barrier_acquire_function() {
C.SDL_MemoryBarrierAcquireFunction()
}
// AtomicT is a type representing an atomic integer value. It is a struct
// so people don't accidentally use numeric operations on it.
@[typedef]
pub struct C.SDL_atomic_t {
pub:
value int
}
pub type AtomicT = C.SDL_atomic_t
fn C.SDL_AtomicCAS(a &C.SDL_atomic_t, oldval int, newval int) bool
// atomic_cas sets an atomic variable to a new value if it is currently an old value.
//
// returns SDL_TRUE if the atomic variable was set, SDL_FALSE otherwise.
//
// NOTE If you don't know what this function is for, you shouldn't use it!
pub fn atomic_cas(a &C.SDL_atomic_t, oldval int, newval int) bool {
return unsafe { C.SDL_AtomicCAS(a, oldval, newval) }
}
fn C.SDL_AtomicSet(a &C.SDL_atomic_t, v int) int
// atomic_set sets an atomic variable to a value.
//
// returns The previous value of the atomic variable.
pub fn atomic_set(a &AtomicT, v int) int {
return unsafe { C.SDL_AtomicSet(&C.SDL_atomic_t(a), v) }
}
fn C.SDL_AtomicGet(a &C.SDL_atomic_t) int
// atomic_get gets the value of an atomic variable
pub fn atomic_get(a &AtomicT) int {
return unsafe { C.SDL_AtomicGet(&C.SDL_atomic_t(a)) }
}
fn C.SDL_AtomicAdd(a &C.SDL_atomic_t, v int) int
// atomic_add adds to an atomic variable.
//
// returns The previous value of the atomic variable.
//
// NOTE This same style can be used for any number operation
pub fn atomic_add(a &AtomicT, v int) int {
return unsafe { C.SDL_AtomicAdd(&C.SDL_atomic_t(a), v) }
}
fn C.SDL_AtomicIncRef(a &C.SDL_atomic_t) int
// atomic_inc_ref increments an atomic variable used as a reference count.
pub fn atomic_inc_ref(a &AtomicT) int {
return unsafe { C.SDL_AtomicIncRef(&C.SDL_atomic_t(a)) }
}
fn C.SDL_AtomicDecRef(a &C.SDL_atomic_t) bool
// atomic_dec_ref decrements an atomic variable used as a reference count.
//
// returns SDL_TRUE if the variable reached zero after decrementing,
// SDL_FALSE otherwise
//
// `a`'s C type is `void **a`
pub fn atomic_dec_ref(a &AtomicT) bool {
return unsafe { C.SDL_AtomicDecRef(&C.SDL_atomic_t(a)) }
}
fn C.SDL_AtomicCASPtr(a voidptr, oldval voidptr, newval voidptr) bool
// atomic_cas_ptr sets a pointer to a new value if it is currently an old value.
//
// returns SDL_TRUE if the pointer was set, SDL_FALSE otherwise.
//
// NOTE If you don't know what this function is for, you shouldn't use it!
//
// `a`'s C type is `void **a`
pub fn atomic_cas_ptr(a voidptr, oldval voidptr, newval voidptr) bool {
return C.SDL_AtomicCASPtr(a, oldval, newval)
}
fn C.SDL_AtomicSetPtr(a voidptr, v voidptr) voidptr
// atomic_set_ptr set a pointer to a value atomically.
//
// returns the previous value of the pointer.
//
// `a`'s C type is `void **a`
pub fn atomic_set_ptr(a voidptr, v voidptr) voidptr {
return C.SDL_AtomicSetPtr(a, v)
}
fn C.SDL_AtomicGetPtr(a voidptr) voidptr
// atomic_get_ptr gets the value of a pointer atomically.
//
// `a`'s C type is `void **a`
pub fn atomic_get_ptr(a voidptr) voidptr {
return C.SDL_AtomicGetPtr(a)
}