-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdictator.go
325 lines (278 loc) · 7.74 KB
/
dictator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
package dictator
import (
"container/heap"
"fmt"
"log"
"math"
"os"
"strings"
)
const (
gzipMaxMatchLength = 258
brMaxMatchLength = 16 * 1024 * 1024
minMatchLength = 4
hashBits = 15
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
)
type compressionLevel struct {
good, lazy, nice, chain, max int
}
var levels = []compressionLevel{
{}, // 0
{3, 0, 8, 4, gzipMaxMatchLength},
{3, 0, 16, 8, gzipMaxMatchLength},
{3, 0, 32, 32, gzipMaxMatchLength},
{4, 4, 16, 16, gzipMaxMatchLength},
{8, 16, 32, 32, gzipMaxMatchLength},
{8, 16, 128, 128, gzipMaxMatchLength},
{8, 32, 128, 256, gzipMaxMatchLength},
{32, 128, 258, 1024, gzipMaxMatchLength},
{32, 258, 258, 4096, gzipMaxMatchLength},
}
var brLevel = compressionLevel{32, 1024, 2048, 8192, brMaxMatchLength}
type dictator struct {
// Pseudo deflate variables, we need those to perform deflate like matching, to identify strings that are emmited as is
compressionLevel
window []byte
hashHead [hashSize]int
hashPrev []int
// Accumulate characters emitted as is
stringBuf []byte
stringLen int
// Count all the strings here
table map[string]int
}
func NewDictator(windowSize int) *dictator {
dictator := new(dictator)
dictator.hashPrev = make([]int, windowSize)
dictator.stringBuf = make([]byte, windowSize)
return dictator
}
func (d *dictator) init(level int) (err error) {
switch {
case level == 10:
d.compressionLevel = brLevel
case level >= 4 && level <= 9:
d.compressionLevel = levels[level]
default:
return fmt.Errorf("Only supports levels [4, 9] for gzip, or 10 for brotli, got %d", level)
}
d.stringLen = 0
d.table = make(map[string]int)
for i := range d.hashHead {
d.hashHead[i] = -1
}
return nil
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
func (d *dictator) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
minMatchLook := d.max
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = prevLength
if length >= d.good {
tries >>= 2
}
w0 := win[pos]
w1 := win[pos+1]
wEnd := win[pos+length]
for i := prevHead; tries > 0; tries-- {
if w0 == win[i] && w1 == win[i+1] && wEnd == win[i+length] {
n := 2
for pos+n < len(win) && win[i+n] == win[pos+n] {
n++
}
if n > length && (n > 3) {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i = d.hashPrev[i]; i < 0 {
break
}
}
return
}
func (d *dictator) findIncompressible(in []byte) {
d.window = in
pos := 0
length := minMatchLength - 1
for {
lookahead := len(in) - pos
if lookahead <= minMatchLength {
break
}
hash := ((int(in[pos]) << 10) ^ (int(in[pos]) << 5) ^ (int(in[pos]))) & hashMask
hashHead := d.hashHead[hash]
d.hashPrev[pos] = hashHead
d.hashHead[hash] = pos
prevLength := length
if hashHead >= 0 && prevLength < d.nice {
if newLength, _, ok := d.findMatch(pos, hashHead, minMatchLength-1, lookahead); ok {
length = newLength
}
}
// Now deflate would output the previous match, therefore if accumulated enough uncompressed bytes, "flush" them
if prevLength >= minMatchLength && length <= prevLength {
if d.stringLen >= minMatchLength {
key := string(d.stringBuf[:d.stringLen])
d.table[key]++
d.stringLen = 0
}
newPos := pos + prevLength - 1
if newPos >= len(in) {
break
}
pos++
for pos < newPos {
hash := ((int(in[pos]) << 10) ^ (int(in[pos]) << 5) ^ (int(in[pos]))) & hashMask
hashHead := d.hashHead[hash]
d.hashPrev[pos] = hashHead
d.hashHead[hash] = pos
pos++
}
length = minMatchLength - 1
// Or the previous literal
} else if pos > 0 {
d.stringBuf[d.stringLen] = d.window[pos-1]
d.stringLen++
pos++
} else {
pos++
}
}
if d.stringLen > minMatchLength {
d.table[string(d.stringBuf[:d.stringLen])]++
d.stringLen = 0
}
}
// An Item is something we manage in a priority queue.
type scoredString struct {
value string // The value of the item; arbitrary.
score int // The priority of the item in the queue.
}
// A PriorityQueue implements heap.Interface and holds scoredStrings
type PriorityQueue []*scoredString
func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {
// We want Pop to give us the highest, not lowest, priority so we use greater than here.
return pq[i].score > pq[j].score
}
func (pq PriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *PriorityQueue) Push(x interface{}) {
item := x.(*scoredString)
*pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() interface{} {
old := *pq
n := len(old)
item := old[n-1]
*pq = old[0 : n-1]
return item
}
func findIncompressibleFromFile(path string, windowSize int, compLevel int) (map[string]int, error) {
file, err := os.Open(path)
if err != nil {
return nil, err
}
defer file.Close()
window := make([]byte, windowSize)
n, err := file.Read(window[:len(window)])
if err != nil {
return nil, err
}
d := NewDictator(windowSize)
d.init(compLevel)
d.findIncompressible(window[:n])
return d.table, nil
}
// GenerateTable builds a frequency table of incompressible literals from files.
func GenerateTable(windowSize int, paths []string, compLevel int, progress chan<- float64, concurrency int) (table map[string]int) {
tasks := make(chan string, len(paths))
output := make(chan map[string]int, concurrency)
table = make(map[string]int)
for i := 0; i < concurrency; i++ {
go func() {
for path := range tasks {
table, err := findIncompressibleFromFile(path, windowSize, compLevel)
if err != nil {
log.Printf("Failed to read file: %s with error: %s. Skipping.", path, err)
}
output <- table
}
}()
}
for _, path := range paths {
tasks <- path
}
close(tasks)
percent := float64(0)
for i := 0; i < len(paths); i++ {
fileTable := <-output
for k := range fileTable {
table[k]++
}
if newPercent := float64(i) / float64(len(paths)) * 100; (newPercent - percent) >= 1 {
percent = math.Floor(newPercent)
select {
case progress <- newPercent:
default:
}
}
}
close(progress)
return
}
// GenerateDictionary builds an LZ77 dictionary from a given frequency table.
func GenerateDictionary(table map[string]int, dictSize int, threshold int) (dictionary string) {
pq := make(PriorityQueue, 0)
heap.Init(&pq)
for i, v := range table {
// Ignore strings that are not present in more than "threshold" files
if v < threshold {
delete(table, i)
} else {
item := &scoredString{i, (v * (len(i) - 3)) / len(i)}
heap.Push(&pq, item)
}
}
percent := float64(0)
startLen := pq.Len()
// Start popping strings from the heap. We want the highest scoring closer to the end, so they are encoded with smaller distance value
for (pq.Len() > 0) && (len(dictionary) < dictSize) {
item := heap.Pop(&pq).(*scoredString)
// Ignore strings that already made it to the dictionary, append others in front
if !strings.Contains(dictionary, item.value) {
dictionary = item.value + dictionary
}
if newPercent := math.Max(float64(startLen-pq.Len())/float64(startLen), float64(len(dictionary))/float64(dictSize)) * 100; (newPercent - percent) >= 1 {
percent = math.Floor(newPercent)
fmt.Printf("\r%.2f%% ", percent)
}
}
fmt.Println("\r100% ")
// Truncate
if len(dictionary) > dictSize {
dictionary = dictionary[len(dictionary)-dictSize:]
}
return
}