-
Notifications
You must be signed in to change notification settings - Fork 2
/
dialogue_generation.py
434 lines (350 loc) · 18.7 KB
/
dialogue_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
# Get the current PATH
original_path = os.environ.get('PATH')
# Add CUDA path to the PATH
cuda_path = '/usr/local/cuda/bin'
new_path = cuda_path + ':' + original_path
# Set the new PATH
os.environ['PATH'] = new_path
import matplotlib.pyplot as plt
import math
import glob
from argparse import ArgumentParser
from os.path import join
import torch
from soundfile import write
from torchaudio import load
import torchaudio
from tqdm import tqdm
import torch.nn.functional as F
import time
import json
from transformers import BertTokenizer
import librosa
from tqdm import tqdm
from scipy.io.wavfile import write
from covomix.util.other import ensure_dir, pad_spec
import random
import numpy as np
from covomix.util.other import energy_ratios, mean_std
from covomix.conditional_model import CoVoMixModel
from covomix.vocoder.models import Generator
from covomix.vocoder.env import AttrDict
from covomix.covomix_model.text2semantic import TextToSemantic
from data_preparation.generate_mel import mel_spectrogram
# Utils
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def mel_decode_to_wav(generator, mel):
with torch.no_grad():
y_g_hat = generator(mel)
audio = y_g_hat.squeeze()
audio = audio * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
return audio
def extract_mel(x_path, channel_idx = None):
if channel_idx == None:
wav, sr = librosa.load(x_path, sr=sample_rate)
else:
wav, sr = librosa.load(x_path, sr=sample_rate, mono=False)
wav = wav[channel_idx]
wav = np.clip(wav, -1, 1)
x = torch.FloatTensor(wav)
mel = mel_spectrogram(x.unsqueeze(0), n_fft=n_fft, num_mels=num_mels, sampling_rate=sample_rate,
hop_size=hop_size, win_size=win_size, fmin=fmin, fmax=fmax)
mel = mel[0].cpu()
return mel
def equal_len(hubert_code, mel):
equal_len = min(hubert_code.shape[0], mel.shape[1])
hubert_code = hubert_code[:equal_len]
mel = mel[:,:equal_len]
return hubert_code, mel
def prepare_oracle_hubert(prompt):
phoneme_context = np.load(prompt).astype(int)
phoneme_context = torch.LongTensor(phoneme_context)
mel_context = extract_mel(prompt.replace(".hubert_code.npy",".wav")) # [80,T]
phoneme_context, mel_context = equal_len(phoneme_context, mel_context)
if len(phoneme_context) > 400: # The maximum prompt length is 8s
phoneme_context = phoneme_context[:400]
mel_context = mel_context[:,:400]
return phoneme_context, mel_context.permute(1,0)
def load_text2semantic_model(ckpt):
text2semantic = CoVoMixModel.load_from_checkpoint(ckpt, base_dir='', batch_size=16, num_workers=0)
text2semantic.eval()
text2semantic = text2semantic.to(device)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.add_tokens(['[laughter]'])
tokenizer.add_tokens(['[spkchange]'])
tokenizer.add_tokens(['[spka]'])
tokenizer.add_tokens(['[spkb]'])
tokenizer.add_tokens(['[partialoverlap]'])
tokenizer.add_tokens(['[backchannel]'])
return text2semantic, tokenizer
def remove_punctuation(text):
punctuation = '''!()-{};:'"\,<>./?@#$%^&*_~'''
text = text.lower()
for x in text:
if x in punctuation:
text = text.replace(x, "")
return text
def repeat_and_trim_tensor(tensor, T2):
T1, D = tensor.shape
# Calculate the total repeat factor (how many times to repeat the entire T1 dimension)
repeat_factor = -(-T2 // T1) # Ceiling division
# Repeat the tensor
extended_tensor = tensor.repeat(repeat_factor, 1)
# Trim the tensor to the desired T2 length
trimmed_tensor = extended_tensor[:T2, :]
return trimmed_tensor
def remove_unwanted_backchannels(sequence):
parts = sequence.split() # Splits the sequence into parts. Adjust the split method if your delimiter is not a space.
result = []
for i in range(len(parts)):
if parts[i] == '[backchannel]' or parts[i] == '[partialoverlap]':
# Check if the previous part is not '[spkchange]'
if i == 0 or parts[i-1] != '[spkchange]':
continue # Skip this backchannel
result.append(parts[i])
return ' '.join(result) # Joins the parts back into a single string. Adjust if your delimiter is not a space.
def covosingle(model, text2semantic, tokenizer, saved_dir, text_dir, prompt_dir):
# Read evaluation pairs
text_list = glob.glob(os.path.join(text_dir, "*.txt"))
for text_file in tqdm(text_list):
prompt = os.path.join(prompt_dir,os.path.basename(text_file.replace(".txt",".hubert_code.npy")))
semantic_prompt1, mel_prompt1 = prepare_oracle_hubert(prompt.replace(".hubert_code.npy","_1.hubert_code.npy"))
semantic_prompt2, mel_prompt2 = prepare_oracle_hubert(prompt.replace(".hubert_code.npy","_2.hubert_code.npy"))
with open (text_file, "r", encoding='utf-8') as f:
phone_txt = f.read()
if phone_txt != "" or phone_txt != "\n" or phone_txt != "\t" or phone_txt != " ":
phone_txt_list = phone_txt.split("[spkchange]")
generate_speech_list = []
for i in range(len(phone_txt_list)):
txt = phone_txt_list[i]
txt = remove_punctuation(txt)
txt = txt.lower()
phone_input = cosingle_pred(txt, tokenizer, text2semantic)
if i % 2 == 0:
phone_input = torch.cat((semantic_prompt1, phone_input))
phone_input = torch.clamp(phone_input, max=501)
mel_input = torch.zeros((phone_input.shape[0], 80))
mel_input[:len(mel_prompt1),:] = mel_prompt1
mask = torch.zeros(phone_input.shape[0]).bool()
mask[len(mel_prompt1):] = True
else:
phone_input = torch.cat((semantic_prompt2, phone_input))
phone_input = torch.clamp(phone_input, max=501)
mel_input = torch.zeros((phone_input.shape[0], 80))
mel_input[:len(mel_prompt2),:] = mel_prompt2
mask = torch.zeros(phone_input.shape[0]).bool()
mask[len(mel_prompt2):] = True
print("phone_input",phone_input.shape, "mel_input", mel_input.shape, "mask", mask.shape)
sampled_mel_total = model.synthesis_sample(phoneme_ids = phone_input.unsqueeze(dim=0).to(device),
cond = mel_input.unsqueeze(dim=0).to(device),
mask = mask.unsqueeze(dim=0).to(device),
cond_scale = 0.7,)
sampled_mel = sampled_mel_total[:, mask,:]
print("sampled_mel",sampled_mel.shape)
generate_speech = mel_decode_to_wav(generator.to(device), sampled_mel.permute(0,2,1).squeeze(0).to(device))
generate_speech_list.append(generate_speech)
generate_speech_dialogue = np.concatenate(generate_speech_list)
filename = os.path.basename(text_file.replace(".txt",".wav"))
write(join(saved_dir, filename), 8000, generate_speech_dialogue)
print("Saved wavfile",join(saved_dir, filename))
def cosingle_pred(phone_txt, tokenizer, text2semantic):
# Tokenize text
txt_after_tokenizer = tokenizer([phone_txt], padding=True, truncation=True, return_tensors="pt")
phoneme_input = txt_after_tokenizer.input_ids.to(device)
semantic_token = text2semantic.synthesis_sample_text2semantic(phoneme_input)
semantic_token = semantic_token.squeeze().cpu()
return semantic_token
def covosinx(model, text2semantic, tokenizer, saved_dir, text_dir, prompt_dir): # 1spk means test on 1spk
with open(os.path.join(saved_dir,"config.txt"),"w") as f:
f.write("Vocoder: "+str(h)+'\n')
f.write("t2s_ckpt: "+str(t2s_ckpt)+'\n')
f.write("acoustic model: "+acous_ckpt+'\n')
# Read evaluation pairs
text_list = glob.glob(os.path.join(text_dir, "*.txt"))
for text_file in tqdm(text_list):
prompt = os.path.join(prompt_dir,os.path.basename(text_file).replace(".txt",".hubert_code.npy"))
semantic_prompt1, mel_prompt1 = prepare_oracle_hubert(prompt.replace(".hubert_code.npy","_1.hubert_code.npy"))
semantic_prompt2, mel_prompt2 = prepare_oracle_hubert(prompt.replace(".hubert_code.npy","_2.hubert_code.npy"))
mel_input_A = mel_prompt1
semantic_A = semantic_prompt1
mel_input_B = mel_prompt2
semantic_B = semantic_prompt2
min_prompt_len = min(mel_input_A.shape[0], mel_input_B.shape[0])
mel_input_A = mel_input_A[:min_prompt_len,:]
mel_input_B = mel_input_B[:min_prompt_len,:]
semantic_A = semantic_A[:min_prompt_len]
semantic_B = semantic_B[:min_prompt_len]
mel_input_prompt = torch.cat((mel_input_A, mel_input_B),dim=-1)
with open (text_file, "r", encoding='utf-8') as f:
phone_txt = f.read()
if phone_txt != "" or phone_txt != "\n" or phone_txt != "\t" or phone_txt != " ":
phone_txt_list = phone_txt.split("[spkchange]")
for i in range(len(phone_txt_list)):
txt = phone_txt_list[i]
txt = remove_punctuation(txt)
txt = txt.lower()
phone_input1 = cosingle_pred(txt, tokenizer, text2semantic)
phone_input2 = torch.ones_like(phone_input1)*157
# Concatenation in semantic token level
if i % 2 == 0:
semantic_A = torch.cat((semantic_A, phone_input1))
semantic_B = torch.cat((semantic_B, phone_input2))
else:
semantic_A = torch.cat((semantic_A, phone_input2))
semantic_B = torch.cat((semantic_B, phone_input1))
max_phone_len = max(semantic_A.shape[0], semantic_B.shape[0])
semantic_A = torch.nn.functional.pad(semantic_A, (0, max_phone_len-semantic_A.shape[0]), 'constant', 157)
semantic_B = torch.nn.functional.pad(semantic_B, (0, max_phone_len-semantic_B.shape[0]), 'constant', 157)
phone_input = torch.cat((semantic_A.unsqueeze(-1),semantic_B.unsqueeze(-1)),dim=-1)
phone_input = torch.clamp(phone_input, max=501)
mask = torch.zeros(phone_input.shape[0]).bool()
mask[min_prompt_len:] = True
mel_input = torch.zeros((phone_input.shape[0], 160))
mel_input[:min_prompt_len,:] = mel_input_prompt
# Synthesis and save 1 output models
sampled_mel_total = model.synthesis_sample(phoneme_ids = phone_input.unsqueeze(dim=0).to(device), cond = mel_input.unsqueeze(dim=0).to(device), mask = mask.unsqueeze(dim=0).to(device), cond_scale = 0.7)
valid_mel = sampled_mel_total[:, mask,:]
generate_speech = mel_decode_to_wav(generator.to(device), valid_mel.permute(0,2,1).squeeze(0).to(device))
#print("generate_speech1",generate_speech1.shape)
filename = os.path.basename(text_file.replace(".txt",".wav"))
write(join(saved_dir, filename), 8000, generate_speech)
print("Saved wavfile",join(saved_dir, filename))
def covomix(model, text2semantic, tokenizer, saved_dir, text_dir, prompt_dir): # 1spk means test on 1spk
# Model Initialization
with open(os.path.join(saved_dir,"config.txt"),"w") as f:
f.write("Vocoder: "+str(h)+'\n')
f.write("t2s_ckpt: "+str(t2s_ckpt)+'\n')
f.write("acoustic model: "+acous_ckpt+'\n')
# Generation
text_list = glob.glob(os.path.join(text_dir, "*.txt"))
for text_file in tqdm(text_list):
prompt = os.path.join(prompt_dir,os.path.basename(text_file).replace(".txt",".hubert_code.npy"))
semantic_prompt1, mel_prompt1 = prepare_oracle_hubert(prompt.replace(".hubert_code.npy","_1.hubert_code.npy"))
semantic_prompt2, mel_prompt2 = prepare_oracle_hubert(prompt.replace(".hubert_code.npy","_2.hubert_code.npy"))
mel_input_A = mel_prompt1
semantic_A = semantic_prompt1
mel_input_B = mel_prompt2
semantic_B = semantic_prompt2
min_prompt_len = min(mel_input_A.shape[0], mel_input_B.shape[0])
mel_input_A = mel_input_A[:min_prompt_len,:]
mel_input_B = mel_input_B[:min_prompt_len,:]
semantic_A = semantic_A[:min_prompt_len]
semantic_B = semantic_B[:min_prompt_len]
mel_input_prompt = torch.cat((mel_input_A, mel_input_B),dim=-1)
with open (text_file, "r", encoding='utf-8') as f:
phone_txt = f.read()
if phone_txt != "" or phone_txt != "\n" or phone_txt != "\t" or phone_txt != " ":
phone_txt = remove_punctuation(phone_txt)
phone_txt = phone_txt.lower()
phone_input1, phone_input2, mel_to_synthesis = comix_pred(phone_txt,tokenizer,text2semantic)
semantic_A = torch.cat((semantic_A, phone_input1))
semantic_B = torch.cat((semantic_B, phone_input2))
max_phone_len = max(semantic_A.shape[0], semantic_B.shape[0])
semantic_A = torch.nn.functional.pad(semantic_A, (0, max_phone_len-semantic_A.shape[0]), 'constant', 157)
semantic_B = torch.nn.functional.pad(semantic_B, (0, max_phone_len-semantic_B.shape[0]), 'constant', 157)
phone_input = torch.cat((semantic_A.unsqueeze(-1),semantic_B.unsqueeze(-1)),dim=-1)
phone_input = torch.clamp(phone_input, max=501)
mask = torch.zeros(phone_input.shape[0]).bool()
mask[min_prompt_len:] = True
mel_input = torch.zeros((phone_input.shape[0], 160))
mel_input[:min_prompt_len,:] = mel_input_prompt
# Synthesis and save 1 output models
sampled_mel_total = model.synthesis_sample(phoneme_ids = phone_input.unsqueeze(dim=0).to(device), cond = mel_input.unsqueeze(dim=0).to(device), mask = mask.unsqueeze(dim=0).to(device), cond_scale = 0.7)
valid_mel = sampled_mel_total[:, mask,:]
generate_speech = mel_decode_to_wav(generator.to(device), valid_mel.permute(0,2,1).squeeze(0).to(device))
#print("generate_speech1",generate_speech1.shape)
filename = os.path.basename(text_file.replace(".txt",".wav"))
write(join(saved_dir, filename), 8000, generate_speech)
print("Saved wavfile",join(saved_dir, filename))
def comix_pred(txt,tokenizer,text2semantic):
# Tokenize text
txt_after_tokenizer = tokenizer([txt], padding=True, truncation=True, return_tensors="pt").input_ids.to(device)
# Predicted semantic token
semantic_token = text2semantic.synthesis_sample_text2semantic(txt_after_tokenizer)
semantic_token = semantic_token.squeeze().cpu()
half = semantic_token.shape[0]//2
semantic_token_1 = semantic_token[:half]
semantic_token_2 = semantic_token[half:]
mel_to_synthesis = torch.zeros((80,len(semantic_token_1)))
return semantic_token_1, semantic_token_2, mel_to_synthesis
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--t2s_ckpt", type=str, default = "/pretrained_models/cosingle.ckpt", help='text2semantic model checkpint')
parser.add_argument("--acous_ckpt", type=str, default="/pretrained_models/comix.ckpt", help='acoustic model checkpoint')
parser.add_argument("--hifigan_ckpt", type=str, default="/pretrained_models/vocoder.ckpt", help="evaluation mode")
parser.add_argument("--text_dir", type=str, default = "test/test_dir", help='directory containing text to synthesize')
parser.add_argument("--prompt_dir", type=str, default = "test/monologue_prompt_dir", help='directory containing acoustic prompt (each monologue has 1 prompt)')
parser.add_argument("--saved_dir", type=str, default = ".saved_dir", help='target directory')
parser.add_argument("--seed", type=int, default = 30, help='random seed')
parser.add_argument("--mode", type=str, choices=["covosingle", "covosinx", "covomix"], default = "covosingle", help='inference mode')
args = parser.parse_args()
print(args)
hifigan_ckpt = args.hifigan_ckpt
t2s_ckpt = args.t2s_ckpt
acous_ckpt = args.acous_ckpt
text_dir = args.text_dir
prompt_dir = args.prompt_dir
saved_dir = args.saved_dir
seed = args.seed
mode = args.mode
ensure_dir(file_path=saved_dir)
# Parameters for Extracting Mel-spectrogram
global MAX_WAV_VALUE, sample_rate, hop_size, win_size, fmin, fmax, n_fft, num_mels
MAX_WAV_VALUE = 32768.0
sample_rate = 8000
hop_size = 160
win_size = 480
fmin= 0
fmax = 4000
n_fft= 480
num_mels = 80
# set seed
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
# Model Initialization
## Initialize vocoder
config_file = os.path.join(os.path.split(hifigan_ckpt)[0], 'vocoder_config.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
global device
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
## Generator loading
global generator
generator = Generator(h).to(device)
state_dict_g = load_checkpoint(hifigan_ckpt, device)
generator.load_state_dict(state_dict_g['generator'])
generator.eval()
generator.remove_weight_norm()
print("Successfully loaded vocoder: Hifigan-8k 20ms-hop-length traind on Fisher for 4k max frequency and 8k sampling rate, trained for 400k steps")
text2semantic, tokenizer = load_text2semantic_model(t2s_ckpt)
model = CoVoMixModel.load_from_checkpoint(acous_ckpt, base_dir='', batch_size=16, num_workers=0)
model.eval()
model = model.to(device)
with open(os.path.join(saved_dir,"config.txt"),"w") as f:
f.write("Vocoder: "+str(h)+'\n')
f.write("t2s_ckpt: "+str(t2s_ckpt)+'\n')
f.write("acoustic model: "+acous_ckpt+'\n')
print("Successfully loaded models, start inference...")
if mode == "covosingle":
covosingle(model, text2semantic, tokenizer, saved_dir, text_dir, prompt_dir)
elif mode == "covosinx":
covosinx(model, text2semantic, tokenizer, saved_dir, text_dir, prompt_dir)
elif mode == "covomix":
covomix(model, text2semantic, tokenizer, saved_dir, text_dir, prompt_dir)
else:
print("mode ",mode," is not supported, we only support covosingle, covosinx, covomix")