-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
205 lines (174 loc) · 6.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import mmap
import time
import toml
import torch
import pickle
import neetbox
import argparse
from tqdm import tqdm
from random import randint
from model import GPTLangModel
from neetbox.logging import logger
from neetbox.utils import ResourceLoader
parser = argparse.ArgumentParser(prog="GPTv1 train", description="Train GPTv1 model")
parser.add_argument("-c", "--config")
launch_args = parser.parse_args()
# load config file
config = toml.load(launch_args.config)
# get configs
train_config = config["train"]
test_config = config["test"]
model_config = config["model"]
# check if cuda is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# read vocabulary set from file
with open(config["vocabulary"], "r", encoding="utf-8") as f:
text = f.read()
vocabulary = sorted(list(set(text)))
# build char embedding from vocabulary set
string2int = {ch: i for i, ch in enumerate(vocabulary)}
int2string = {i: ch for i, ch in enumerate(vocabulary)}
encode = lambda s: [string2int[c] for c in s]
decode = lambda l: "".join([int2string[i] for i in l])
# load dataset from parsed .txt files. Please run 'convert_data.py' before run train process.
txt_loader = ResourceLoader(
folder=config["data_folder"], file_types=["txt"], force_rescan=True
) # scan .txt files from ./data
train_txts = [
txt for txt in txt_loader.get_file_list() if "test" not in txt
] # .txt file list for train
test_txts = [
txt for txt in txt_loader.get_file_list() if "test" in txt
] # .txt file for test
def get_random_text_chunk(train_or_test, batch_size, block_size):
"""get random text chunk from all .txt files
Args:
train_or_test (str): for train or test.
Returns:
Torch.Tensor: the encoded text chunk
"""
random_file = (
train_txts[randint(0, len(train_txts) - 1)]
if train_or_test == "train"
else test_txts[randint(0, len(test_txts) - 1)]
)
with open(random_file, "rb") as f:
# using memory mapping
with mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) as mm:
# determine the file size and a random position to start with
filesize = len(mm)
pos_start = randint(0, filesize - block_size * batch_size)
# seek to the random position and read the block into memory
mm.seek(pos_start)
mem_block = mm.read(block_size * batch_size - 1)
# decode the block into a string, ignoring any invalid sequences
block_decoded = mem_block.decode("utf-8", errors="ignore").replace("\r", "")
# convert to tensor
data = torch.tensor(encode(block_decoded), dtype=torch.long)
return data
def get_batch(
data, batch_size, block_size
): # generate a each-time-random batch with batchsize
# ix indicates random index in the text. Its size is batch_size that you can use it to sample batch_size times.
ix = torch.randint(len(data) - block_size, (batch_size,))
# print(ix) # ix is random location(index) in text
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
# get batch size and block size from config
block_size = model_config["block_size"]
batch_size = train_config["batch_size"]
# build model
model = GPTLangModel(
vocabulary_size=len(vocabulary),
n_decoder=model_config["n_decoder"],
n_head=model_config["n_head"],
n_embed=model_config["n_embed"],
block_size=block_size,
)
# try load model weight from file
if train_config["resume"]:
try:
if os.path.exists("model.pkl"):
with open("model.pkl", "rb") as f:
model = pickle.load(f)
logger.ok("model loaded from existing pkl file")
except:
logger.err("Error occured while loading from existing weight. ignoring...")
# move model to target device
model = model.to(device)
logger.ok(f"{model.__class__} now on {device}, ready to train.")
@neetbox.action(name="chat")
def inference(prompt: str):
"""chat with model
Args:
prompt (str): your input
Returns:
str: model's response
"""
model.eval()
context = torch.tensor(encode(prompt), dtype=torch.long, device=device)
generated_chars = decode(
model.generate(context.unsqueeze(0), max_new_tokens=150)[0].tolist()
)
model.train()
return generated_chars
# define how to test
@torch.no_grad()
def test(num_steps, batch_size, block_size):
model.eval()
loss_list = torch.zeros(num_steps)
for i in range(num_steps):
random_text_chunk = get_random_text_chunk("test", batch_size, block_size)
test_x, test_y = get_batch(random_text_chunk, batch_size, block_size)
_, loss = model(test_x, test_y)
loss_list[i] = loss.item()
loss = loss_list.mean()
model.train()
return loss
@neetbox.action(name="stop")
def stop_and_exit_anyway():
"""stop and exit train anyway"""
os._exit(0)
learning_rate = train_config["learning_rate"]
max_iter = train_config["max_iter"]
eval_per_iter = test_config["eval_frequency"]
# define optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# train process
neetbox.add_hyperparams(config)
logger.info(f"train started")
current_loss = 114514.0
for iter in neetbox.progress(tqdm(range(max_iter)), name="Train"):
# random batch data
random_text_chunk = get_random_text_chunk("train", batch_size, block_size)
xb, yb = get_batch(random_text_chunk, batch_size, block_size)
# get predict and loss
logits, loss = model.forward(xb, yb)
neetbox.add_scalar(name="loss train", x=iter, y=loss.item())
optimizer.zero_grad(set_to_none=True)
loss.backward()
if iter and iter % eval_per_iter == 0:
test_loss = test(test_config["test_iter"], batch_size, block_size)
test_loss = test_loss.item()
neetbox.add_scalar(name="loss test", x=iter, y=test_loss)
if test_loss <= current_loss:
with open("model.pkl", "wb") as f:
pickle.dump(model, f) # save model to file
logger.log("model saved to pkl file")
current_loss = test_loss
optimizer.step()
# test model
test_prompt = test_config["test_prompt"]
logger.info(f"prompt: {test_prompt}")
context = torch.tensor(encode(test_prompt), dtype=torch.long, device=device)
generated_chars = decode(
model.generate(context.unsqueeze(0), max_new_tokens=100)[0].tolist()
)
logger.info(f"response: {generated_chars}")
logger.ok("train complete.")
logger.ok("model ready, please open http://localhost:20202/ in your browser to chat")
while True:
time.sleep(1)