-
Notifications
You must be signed in to change notification settings - Fork 607
/
tamos_swin_base.py
184 lines (154 loc) · 10.4 KB
/
tamos_swin_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.optim as optim
from ltr.data.loader import MultiEpochLTRLoader
from ltr.dataset import Got10k, Lasot, TrackingNet, MSCOCOMOTSeq, YouTubeVOS, TAOBURST, ImagenetVIDMOT
from ltr.data import processing, sampler, LTRLoader
from ltr.models.tracking import tamosnet
import ltr.models.loss as ltr_losses
import ltr.actors.tracking as actors
from ltr.trainers import LTRTrainer
import ltr.data.transforms as tfm
from ltr import MultiGPU
from ltr.models.loss.bbr_loss import GIoULoss
import numpy as np
def run(settings):
settings.description = 'TaMOs-Swin-Base'
settings.multi_gpu = True
settings.batch_size = 6 * torch.cuda.device_count()
settings.num_workers = 2 * torch.cuda.device_count()
fail_safe = True
load_latest = True
settings.print_interval = 10
settings.save_checkpoint_freq = 10
settings.normalize_mean = [0.485, 0.456, 0.406]
settings.normalize_std = [0.229, 0.224, 0.225]
settings.search_area_factor = 5.0
settings.output_sigma_factor = 1 / 4
settings.target_filter_sz = 1
settings.feature_sz = (36, 24)
settings.output_sz = (16 * settings.feature_sz[0], 16 * settings.feature_sz[1]) # w, h
settings.center_jitter_factor = {'train': 0., 'test': 4.5}
settings.scale_jitter_factor = {'train': 0., 'test': 0.5}
settings.hinge_threshold = 0.05
settings.num_train_frames = 1
settings.num_test_frames = 1
settings.num_encoder_layers = 6
settings.num_decoder_layers = 6
settings.frozen_backbone_layers = ['0', '1']
settings.freeze_backbone_bn_layers = True
settings.crop_type = 'inside_major'
settings.max_scale_change = 1.5
settings.max_gap = {'sot': 200, 'mot': 100}
settings.train_samples_per_epoch = 40000
settings.val_samples_per_epoch = 10000
settings.val_epoch_interval = 5
settings.num_epochs = 300
settings.weight_giou = 1.0
settings.weight_clf = 100.0
settings.normalized_bbreg_coords = True
settings.center_sampling_radius = 1.0
settings.use_test_frame_encoding = False # Set to True to use the same as in the paper but is less stable to train.
settings.grad_clip_max_norm = 0.1
settings.max_num_objects = 10
# Train datasets
lasot_train = Lasot(settings.env.lasot_dir, split='train')
got10k_train = Got10k(settings.env.got10k_dir, split='vottrain')
trackingnet_train = TrackingNet(settings.env.trackingnet_dir, set_ids=list(range(4)))
coco_mot_train = MSCOCOMOTSeq(settings.env.coco_dir)
youtubevos_train = YouTubeVOS(settings.env.youtubevos_dir, multiobj=True, split='jjtrain')
imagenetvid_train = ImagenetVIDMOT(settings.env.imagenet_vid_gmot_dir, split='train')
tao_train = TAOBURST(settings.env.tao_burst_dir)
# Validation datasets
got10k_val = Got10k(settings.env.got10k_dir, split='votval')
imagenetvid_val = ImagenetVIDMOT(settings.env.imagenet_vid_gmot_dir, split='val')
# Data transform
transform_joint = tfm.Transform(tfm.ToGrayscale(probability=0.05),
tfm.RandomHorizontalFlip(probability=0.5))
transform_train = tfm.Transform(
tfm.RandomAffine(p_flip=0.5, max_rotation=1.0, max_scale=np.log(1.5), scale_center=0.5),
tfm.ToTensorAndJitter(0.2),
tfm.Normalize(mean=settings.normalize_mean, std=settings.normalize_std))
transform_val = tfm.Transform(tfm.ToTensor(),
tfm.Normalize(mean=settings.normalize_mean, std=settings.normalize_std))
# The tracking pairs processing module
output_sigma = settings.output_sigma_factor / settings.search_area_factor
label_params = {'feature_sz': settings.feature_sz, 'sigma_factor': output_sigma,
'kernel_sz': settings.target_filter_sz}
data_processing_train = processing.TaMOsProcessing(max_num_objects=settings.max_num_objects,
search_area_factor=settings.search_area_factor,
output_sz=settings.output_sz,
center_jitter_factor=settings.center_jitter_factor,
scale_jitter_factor=settings.scale_jitter_factor,
crop_type=settings.crop_type,
max_scale_change=settings.max_scale_change,
mode='sequence',
label_function_params=label_params,
transform=transform_train,
joint_transform=transform_joint,
use_normalized_coords=settings.normalized_bbreg_coords,
center_sampling_radius=settings.center_sampling_radius,
include_high_res_labels=True,
enforce_one_sample_region_per_object=True)
data_processing_val = processing.TaMOsProcessing(max_num_objects=settings.max_num_objects,
search_area_factor=settings.search_area_factor,
output_sz=settings.output_sz,
center_jitter_factor=settings.center_jitter_factor,
scale_jitter_factor=settings.scale_jitter_factor,
crop_type=settings.crop_type,
max_scale_change=settings.max_scale_change,
mode='sequence',
label_function_params=label_params,
transform=transform_val,
joint_transform=transform_joint,
use_normalized_coords=settings.normalized_bbreg_coords,
center_sampling_radius=settings.center_sampling_radius,
include_high_res_labels=True,
enforce_one_sample_region_per_object=True)
# Train sampler and loader
dataset_train = sampler.TaMOsDatasetSampler([lasot_train, trackingnet_train, got10k_train, tao_train, coco_mot_train, youtubevos_train, imagenetvid_train], [1, 1, 1, 1, 1, 1, 1],
samples_per_epoch=settings.train_samples_per_epoch, max_gap=settings.max_gap,
num_test_frames=settings.num_test_frames, num_train_frames=settings.num_train_frames,
processing=data_processing_train)
loader_train = MultiEpochLTRLoader('train', dataset_train, training=True, batch_size=settings.batch_size,
num_workers=settings.num_workers,
shuffle=True, drop_last=True, stack_dim=1)
# Validation samplers and loaders
dataset_sot_val = sampler.TaMOsDatasetSampler([got10k_val], [1], samples_per_epoch=settings.val_samples_per_epoch,
max_gap=settings.max_gap, num_test_frames=settings.num_test_frames,
num_train_frames=settings.num_train_frames,
processing=data_processing_val)
loader_sot_val = LTRLoader('val_sot', dataset_sot_val, training=False, batch_size=settings.batch_size,
num_workers=settings.num_workers,
shuffle=False, drop_last=True, epoch_interval=settings.val_epoch_interval, stack_dim=1)
dataset_mot_val = sampler.TaMOsDatasetSampler([imagenetvid_val], [1], samples_per_epoch=settings.val_samples_per_epoch,
max_gap=settings.max_gap, num_test_frames=settings.num_test_frames,
num_train_frames=settings.num_train_frames, processing=data_processing_val)
loader_mot_val = LTRLoader('val_mot', dataset_mot_val, training=False, batch_size=settings.batch_size, num_workers=settings.num_workers,
shuffle=False, drop_last=True, epoch_interval=settings.val_epoch_interval, stack_dim=1)
# Create network and actor
net = tamosnet.tamosnet_swin_base(filter_size=settings.target_filter_sz, backbone_pretrained=True,
head_feat_blocks=0,
head_feat_norm=True, final_conv=True, out_feature_dim=256,
feature_sz=settings.feature_sz,
frozen_backbone_layers=settings.frozen_backbone_layers,
num_encoder_layers=settings.num_encoder_layers,
num_decoder_layers=settings.num_decoder_layers,
head_layer=['1', '2'],
num_tokens=settings.max_num_objects, label_enc='gaussian', box_enc='ltrb_token',
fpn_head_cls_output_mode=['low', 'high', 'trafo'],
fpn_head_bbreg_output_mode=['low', 'high', 'trafo'])
# Wrap the network for multi GPU training
if settings.multi_gpu:
net = MultiGPU(net, dim=1)
objective = {'giou': GIoULoss(), 'test_clf': ltr_losses.FocalLoss()}
loss_weight = {'giou': settings.weight_giou, 'test_clf': settings.weight_clf}
actor = actors.TaMOsActor(net=net, objective=objective, loss_weight=loss_weight, prob=True, fg_cls_loss=True)
# Optimizer
optimizer = optim.AdamW([
{'params': actor.net.head.parameters(), 'lr': 1e-4},
{'params': actor.net.feature_extractor.layers[2].parameters(), 'lr': 2e-5}
], lr=2e-4, weight_decay=0.0001)
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[150, 250], gamma=0.2)
trainer = LTRTrainer(actor, [loader_train, loader_sot_val, loader_mot_val], optimizer, settings, lr_scheduler,
freeze_backbone_bn_layers=settings.freeze_backbone_bn_layers)
trainer.train(settings.num_epochs, load_latest=load_latest, fail_safe=fail_safe)