-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
258 lines (208 loc) · 9.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import sys
import data
import numpy
import torch
import logging
import argparse
import numpy as np
import torchvision
from tqdm import tqdm
import torch.utils.data
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from model import PointLK, PointNet_features
def _init_(args):
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'models'):
os.makedirs('checkpoints/' + args.exp_name + '/' + 'models')
os.system('cp main.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup')
os.system('cp model.py checkpoints' + '/' + args.exp_name + '/' + 'model.py.backup')
os.system('cp data.py checkpoints' + '/' + args.exp_name + '/' + 'data.py.backup')
class IOStream:
def __init__(self, path):
self.f = open(path, 'a')
def cprint(self, text):
print(text)
self.f.write(text + '\n')
self.f.flush()
def close(self):
self.f.close()
def test_one_epoch(device, model, test_loader):
model.eval()
test_loss = 0.0
count = 0
for i, data in enumerate(tqdm(test_loader)):
template, source, igt = data
template = template.to(device)
source = source.to(device)
igt = igt.to(device)
result = model(template, source)
est_T = result['est_T']
r = result['r']
error = est_T.matmul(igt)
I = torch.eye(4).to(error).view(1, 4, 4).expand(error.size(0), 4, 4)
loss_T = torch.nn.functional.mse_loss(error, I, size_average=True) * 16
z = torch.zeros_like(r)
loss_r = torch.nn.functional.mse_loss(r, z, size_average=False)
loss = loss_r + loss_T
test_loss += loss.item()
count += 1
test_loss = float(test_loss)/count
return test_loss
def test(args, model, test_loader, textio):
test_loss = test_one_epoch(args.device, model, test_loader)
textio.cprint('Validation Loss: %f'%(test_loss))
def train_one_epoch(device, model, train_loader, optimizer):
model.train()
train_loss = 0.0
count = 0
for i, data in enumerate(tqdm(train_loader)):
template, source, igt = data
template = template.to(device)
source = source.to(device)
igt = igt.to(device)
result = model(template, source)
est_T = result['est_T']
r = result['r']
error = est_T.matmul(igt)
I = torch.eye(4).to(error).view(1, 4, 4).expand(error.size(0), 4, 4)
loss_T = torch.nn.functional.mse_loss(error, I, size_average=True) * 16
z = torch.zeros_like(r)
loss_r = torch.nn.functional.mse_loss(r, z, size_average=False)
loss = loss_r + loss_T
# forward + backward + optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
count += 1
train_loss = float(train_loss)/count
return train_loss
def train(args, model, train_loader, test_loader, boardio, textio, checkpoint):
learnable_params = filter(lambda p: p.requires_grad, model.parameters())
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(learnable_params)
else:
optimizer = torch.optim.SGD(learnable_params, lr=0.1)
if checkpoint is not None:
min_loss = checkpoint['min_loss']
optimizer.load_state_dict(checkpoint['optimizer'])
best_test_loss = np.inf
for epoch in range(args.start_epoch, args.epochs):
train_loss = train_one_epoch(args.device, model, train_loader, optimizer)
test_loss = test_one_epoch(args.device, model, test_loader)
if test_loss<best_test_loss:
best_test_loss = test_loss
snap = {'epoch': epoch + 1,
'model': model.state_dict(),
'min_loss': best_test_loss,
'optimizer' : optimizer.state_dict(),}
torch.save(snap, 'checkpoints/%s/models/best_model_snap.t7' % (args.exp_name))
torch.save(model.state_dict(), 'checkpoints/%s/models/best_model.t7' % (args.exp_name))
torch.save(snap, 'checkpoints/%s/models/model_snap.t7' % (args.exp_name))
torch.save(model.state_dict(), 'checkpoints/%s/models/model.t7' % (args.exp_name))
boardio.add_scalar('Train Loss', train_loss, epoch+1)
boardio.add_scalar('Test Loss', test_loss, epoch+1)
boardio.add_scalar('Best Test Loss', best_test_loss, epoch+1)
textio.cprint('EPOCH:: %d, Traininig Loss: %f, Testing Loss: %f, Best Loss: %f'%(epoch+1, train_loss, test_loss, best_test_loss))
def options():
parser = argparse.ArgumentParser(description='Point Cloud Registration')
parser.add_argument('--exp_name', type=str, default='exp', metavar='N',
help='Name of the experiment')
parser.add_argument('--dataset_path', type=str, default='ModelNet40',
metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
parser.add_argument('-c', '--categoryfile', type=str, default='./sampledata/modelnet40_half1.txt',
metavar='PATH', help='path to the categories to be trained') # eg. './sampledata/modelnet40_half1.txt'
parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.')
# settings for input data
parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
metavar='DATASET', help='dataset type (default: modelnet)')
parser.add_argument('--num_points', default=1024, type=int,
metavar='N', help='points in point-cloud (default: 1024)')
parser.add_argument('--mag', default=0.8, type=float,
metavar='T', help='max. mag. of twist-vectors (perturbations) on training (default: 0.8)')
# settings for PointNet
parser.add_argument('--fine_tune_pointnet', default='tune', type=str, choices=['fixed', 'tune'],
help='train pointnet (default: tune)')
parser.add_argument('--transfer_ptnet_weights', default='./pretrained/results_prev_part1/ex1_classifier_0915_feat_best.pth', type=str,
metavar='PATH', help='path to pointnet features file')
parser.add_argument('--emb_dims', default=1024, type=int,
metavar='K', help='dim. of the feature vector (default: 1024)')
parser.add_argument('--symfn', default='max', choices=['max', 'avg'],
help='symmetric function (default: max)')
# settings for LK
parser.add_argument('--max_iter', default=10, type=int,
metavar='N', help='max-iter on LK. (default: 10)')
parser.add_argument('--delta', default=1.0e-2, type=float,
metavar='D', help='step size for approx. Jacobian (default: 1.0e-2)')
parser.add_argument('--learn_delta', dest='learn_delta', action='store_true',
help='flag for training step size delta')
# settings for on training
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('-j', '--workers', default=4, type=int,
metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch_size', default=16, type=int,
metavar='N', help='mini-batch size (default: 32)')
parser.add_argument('--test_batch_size', default=8, type=int,
metavar='N', help='mini-batch size (default: 32)')
parser.add_argument('--epochs', default=200, type=int,
metavar='N', help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int,
metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--optimizer', default='Adam', choices=['Adam', 'SGD'],
metavar='METHOD', help='name of an optimizer (default: Adam)')
parser.add_argument('--resume', default='', type=str,
metavar='PATH', help='path to latest checkpoint (default: null (no-use))')
parser.add_argument('--pretrained', default='', type=str,
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
parser.add_argument('--device', default='cuda:0', type=str,
metavar='DEVICE', help='use CUDA if available')
args = parser.parse_args()
return args
def main():
args = options()
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
boardio = SummaryWriter(log_dir='checkpoints/' + args.exp_name)
_init_(args)
textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
textio.cprint(str(args))
trainset, testset = data.get_datasets(args)
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
test_loader = DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
if not torch.cuda.is_available():
args.device = 'cpu'
args.device = torch.device(args.device)
# Create PointNet Model.
ptnet = PointNet_features(emb_dims=args.emb_dims, symfn=args.symfn)
if args.transfer_ptnet_weights and os.path.isfile(args.transfer_ptnet_weights):
ptnet.load_state_dict(torch.load(args.transfer_ptnet_weights, map_location='cpu'))
if args.fine_tune_pointnet == 'tune':
pass
elif args.fine_tune_pointnet == 'fixed':
for param in ptnet.parameters():
param.requires_grad_(False)
# Create PointNetLK Model.
model = PointLK(ptnet=ptnet)
checkpoint = None
if args.resume:
assert os.path.isfile(args.resume)
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
if args.pretrained:
assert os.path.isfile(args.pretrained)
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
model.to(args.device)
if args.eval:
test(args, model, test_loader, textio)
else:
train(args, model, train_loader, test_loader, boardio, textio, checkpoint)
if __name__ == '__main__':
main()