Skip to content

Latest commit

 

History

History
26 lines (18 loc) · 1.22 KB

File metadata and controls

26 lines (18 loc) · 1.22 KB

Real-Time NLP using Kafka and BERT

This Repo contains the code for the article When Kafka Meets BERT: A Realtime NLP using Kafka and BERT — Part 1

At First, Create the New Kafka topic

python kafka_topic_creator.py --topic_name twitter_data --kafka_bootstrap_servers localhost --num_partitions 2 --replication_factor 1

After Creating the topic, We need to start the producer and feed the tweet data one by one with the sleep time of 10ms. Copy the downloaded kaggle data to the data folder

python tweet_producer.py --data_path ./data/tweets_data.csv --topic_name twitter_data --kafka_bootstrap_servers localhost --sleep 0.01

Approach 1: Single Inference

python tweet_consumer_and_predictor.py --topic_name twitter_data --kafka_bootstrap_servers localhost --offset latest --mongodb_database analytics --mongodb_collection_name sentiments

Approach 2: Batched Inference

python tweet_consumer_and_predictor_batched.py --topic_name twitter_data --kafka_bootstrap_servers localhost --offset latest --batch_size 64 --mongodb_database analytics --mongodb_collection_name sentiments