-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathigimf.py
169 lines (129 loc) · 4.77 KB
/
igimf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import scipy.interpolate
import matplotlib.pyplot as plt
import conversions as conv
from dust import dust_uv
def SFR_vs_Ha(x,model):
"""
x = log Lha
y = log SFR
"""
coeff = {'standard': [+4.38e-1,+9.64e-1,+3.21e-2,-8.47e-3,-9.30e-4,-2.67e-5],
'maximal' : [+1.11e-0,+9.63e-1,+2.67e-2,-9.13e-3,-9.97e-4,-2.94e-5],
'minimal1': [-1.58e-1,+8.85e-1,+4.23e-2,-5.70e-3,-7.51e-4,-2.32e-5],
'minimal2': [-1.91e-1,+8.94e-1,+3.50e-2,-6.58e-3,-2.43e-4,+3.84e-5]}
a = coeff[model]
x = x - 41.
return a[0] + a[1]*x + a[2]*x**2 + a[3]*x**3 + a[4]*x**4 + a[5]*x**5
def SFR_vs_FUV(x,model):
"""
x = Muv
y = log SFR
"""
coeff = {'standard': [-5.11,-0.087,0.0214,0.000683,8.43e-06],
'minimal1': [-5.47,-0.124,0.0173,0.000533,6.52e-06]}
a = coeff[model]
return a[0] + a[1]*x + a[2]*x**2 + a[3]*x**3 + a[4]*x**4
def get_igimf_uv_ha(model):
muv = np.arange(-50,-10,0.01)
lha = np.arange(+38,+44,0.01)
sfr_uv = SFR_vs_FUV(muv,model)
sfr_ha = SFR_vs_Ha(lha,model)
cond = (min(sfr_ha)<sfr_uv) & (sfr_uv<max(sfr_ha))
muv,sfr_uv = muv[cond], sfr_uv[cond]
lha = scipy.interpolate.interp1d(sfr_ha,lha)(sfr_uv)
return muv, lha, sfr_uv
def salpeter(m):
alpha = -2.35
return (10**m)**alpha
def kroupa(m):
glob_norm = (10**2)**-2.35 / (10**2)**-2.3
if m <= 0.08:
norm = ((10**0.5)**-2.3 / (10**0.5)**-1.3) * ((10**0.08)**-1.3 / (10**0.08)**-0.3)
alpha = -0.3
elif 0.08 < m <= 0.5:
norm = ((10**0.5)**-2.3 / (10**0.5)**-1.3)
alpha = -1.3
else:
norm = 1.
alpha = -2.3
return (10**m)**alpha * norm * glob_norm
kroupa = np.vectorize(kroupa)
def chabrier(m):
glob_norm = (10**2)**-2.35 / (10**2)**-2.3
coeff = lambda m: 0.086 * np.exp(-(np.log10(m)-np.log10(0.22))**2 / (2*0.57**2))
if m < 1:
norm = ((10**1)**-2.3 / coeff(10**1))
res = coeff(10**m) * norm
else:
res = (10**m)**-2.3
return res * glob_norm
chabrier = np.vectorize(chabrier)
def igimf(m,sfr):
mmax = 0.75 * sfr + 4.83
if m <= 0.08:
alpha = -1.30
elif 0.08 < m <= 0.5:
alpha = -2.35
elif 0.5 < m <= 1.0:
alpha = -2.35
elif 1.0 < m <= mmax:
alpha = -2.35
else:
return np.NaN
return (10**m)**alpha
igimf = np.vectorize(igimf,excluded=['sfr',])
def plot_imfs():
fig,ax = plt.subplots(1,1,figsize=(10,8),dpi=75,tight_layout=True)
m = np.arange(-1,2.01,0.05)
ax.plot(m,salpeter(m),c='k',lw=2,label='Salpeter+55')
ax.plot(m,kroupa(m),c='k',ls='--',lw=2,label='Kroupa+01')
ax.plot(m,chabrier(m),c='k',ls=':',lw=2,label='Chabrier+03')
# sfr_range = np.arange(-5,-1.99,0.5)
# colors = plt.cm.gist_rainbow(np.linspace(0,0.9,len(sfr_range)))
# for sfr,c in zip(sfr_range,colors):
# print 0.75 * sfr + 4.83
# ax.plot(m,igimf(m,sfr),c=c,label='IGIMF (log SFR = %.2f)'%sfr)
ax.legend(loc='best',fontsize=12)
ax.set_xlabel('log (m/M$_\odot$)')
ax.set_ylabel('IMF, $\\xi(m) \ dm$')
ax.set_yscale('log')
def main():
fig,(ax1,ax2) = plt.subplots(2,1,figsize=(10,12),dpi=75,tight_layout=True)
for model,ls in zip(['standard','minimal1'],['-','--']):
muv, lha, sfr = get_igimf_uv_ha(model)
luv = conv.get_absM_from_Lnu(muv,inv=True) + np.log10(conv.light / 1500.)
ratio = luv - lha
ax1.plot(sfr,ratio,c='k',ls=ls,lw=2,label=model.capitalize())
muv_ = dust_uv['M99'].apply_dust(muv)
ax2.plot(muv_,ratio,c='r',ls=ls,lw=2)
muv_ = dust_uv['C14'].apply_dust(muv)
ax2.plot(muv_,ratio,c='b',ls=ls,lw=2)
ax2.plot(-99,-99,c='k',ls='-',lw=2,label='Standard')
ax2.plot(-99,-99,c='k',ls='--',lw=2,label='Minimal1')
ax2.plot(-99,-99,c='r',lw=2,label='using M99 dust')
ax2.plot(-99,-99,c='b',lw=2,label='using C14 dust')
ax1.set_xlabel('log SFR [M$_\odot$ yr$^{-1}$]')
ax2.set_xlabel('Observed UV Magnitude [AB]')
ax2.set_xlim(-16,-23)
for ax in [ax1,ax2]:
ax.set_ylabel('log $\\nu$L$_{\\nu,1500}$/L$_{H\\alpha}$ (dust corrected)')
ax.set_ylim(1.55,2.65)
ax.legend(loc='best',fontsize=12)
def test():
def integrand(Mecl,m):
imf = 1 * (10**m)**-2.35
ecmf = 1 * Mecl**-1.95
return imf * ecmf
max_Mecl = lambda sfr: 10**(0.0144 + 0.75*np.log10(sfr) + 6.77)
igimf = lambda m,sfr: scipy.integrate.quad(integrand,5,max_Mecl(sfr),args=(m,))[0]
igimf = np.vectorize(igimf,excluded=['sfr',])
mass = np.arange(-1,2,0.05)
for sfr,c in zip([1e2,1e1,1e0,1e-1,1e-2],['k','r','g','b','c']):
plt.plot(mass,igimf(mass,sfr),c=c,lw=2,alpha=0.5)
plt.yscale('log')
if __name__ == '__main__':
main()
#plot_imfs()
#test()
plt.show()