forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ncf_test.py
117 lines (95 loc) · 4.04 KB
/
ncf_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests NCF."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import tensorflow as tf
from tensorflow.python.eager import context # pylint: disable=ungrouped-imports
from official.recommendation import constants as rconst
from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.testing import integration
NUM_TRAIN_NEG = 4
class NcfTest(tf.test.TestCase):
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(NcfTest, cls).setUpClass()
ncf_common.define_ncf_flags()
def setUp(self):
super().setUp()
self.top_k_old = rconst.TOP_K
self.num_eval_negatives_old = rconst.NUM_EVAL_NEGATIVES
rconst.NUM_EVAL_NEGATIVES = 2
def tearDown(self):
super().tearDown()
rconst.NUM_EVAL_NEGATIVES = self.num_eval_negatives_old
rconst.TOP_K = self.top_k_old
_BASE_END_TO_END_FLAGS = ['-batch_size', '1044', '-train_epochs', '1']
@unittest.mock.patch.object(rconst, 'SYNTHETIC_BATCHES_PER_EPOCH', 100)
def test_end_to_end_keras_no_dist_strat(self):
integration.run_synthetic(
ncf_keras_main.main,
tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS +
['-distribution_strategy', 'off'])
@unittest.mock.patch.object(rconst, 'SYNTHETIC_BATCHES_PER_EPOCH', 100)
def test_end_to_end_keras_dist_strat(self):
integration.run_synthetic(
ncf_keras_main.main,
tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '0'])
@unittest.mock.patch.object(rconst, 'SYNTHETIC_BATCHES_PER_EPOCH', 100)
def test_end_to_end_keras_dist_strat_ctl(self):
flags = (
self._BASE_END_TO_END_FLAGS + ['-num_gpus', '0'] +
['-keras_use_ctl', 'True'])
integration.run_synthetic(
ncf_keras_main.main, tmp_root=self.get_temp_dir(), extra_flags=flags)
@unittest.mock.patch.object(rconst, 'SYNTHETIC_BATCHES_PER_EPOCH', 100)
def test_end_to_end_keras_1_gpu_dist_strat_fp16(self):
if context.num_gpus() < 1:
self.skipTest(
'{} GPUs are not available for this test. {} GPUs are available'
.format(1, context.num_gpus()))
integration.run_synthetic(
ncf_keras_main.main,
tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS +
['-num_gpus', '1', '--dtype', 'fp16'])
@unittest.mock.patch.object(rconst, 'SYNTHETIC_BATCHES_PER_EPOCH', 100)
def test_end_to_end_keras_1_gpu_dist_strat_ctl_fp16(self):
if context.num_gpus() < 1:
self.skipTest(
'{} GPUs are not available for this test. {} GPUs are available'
.format(1, context.num_gpus()))
integration.run_synthetic(
ncf_keras_main.main,
tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS +
['-num_gpus', '1', '--dtype', 'fp16', '--keras_use_ctl'])
@unittest.mock.patch.object(rconst, 'SYNTHETIC_BATCHES_PER_EPOCH', 100)
def test_end_to_end_keras_2_gpu_fp16(self):
if context.num_gpus() < 2:
self.skipTest(
'{} GPUs are not available for this test. {} GPUs are available'
.format(2, context.num_gpus()))
integration.run_synthetic(
ncf_keras_main.main,
tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS +
['-num_gpus', '2', '--dtype', 'fp16'])
if __name__ == '__main__':
tf.test.main()