Skip to content

Latest commit

 

History

History
40 lines (32 loc) · 1.36 KB

README.md

File metadata and controls

40 lines (32 loc) · 1.36 KB

RH-AI-STEM

Pre-requisites on an empty MacOS

Setting up environments

  • Clone this directory to somewhere you like
  • Run the command:
    • source env.sh

Traning Corgi models

  • Traning:
    • $ cd models/research/object_detection
    • $ python model_main.py --logtostderr --model_dir=corgi_training/ --pipeline_config_path=corgi_training/corgi.config
  • Export inference graph:
    • TODO: Looking for highest number of trained model in models/research/object_detection/corgi_training
    • $ python export_inference_graph.py --input_type image_tensor --pipeline_config_path corgi_training/corgi.config --trained_checkpoint_prefix corgi_training/model.ckpt-<highest_number> --output_directory inference_graph_corgi

Run testing

  • Copy testing script into tensorflow models:
    • $ cd ../../..
    • $ cp corgi_detection.py models/research
  • Run:
    • $ python models/research/corgi_detection.py

Notes:

  • Change the backend of matplotlib in corgi_detection.py to a relevant one of running machine in order to using matplotlib for image rendering