forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
182 lines (163 loc) · 6.6 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import argparse
import numpy as np
import tensorrt as trt
from cuda import cudart
sys.path.insert(1, os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
import common
from image_batcher import ImageBatcher
class TensorRTInfer:
"""
Implements inference for the EfficientNet TensorRT engine.
"""
def __init__(self, engine_path):
"""
:param engine_path: The path to the serialized engine to load from disk.
"""
# Load TRT engine
self.logger = trt.Logger(trt.Logger.ERROR)
with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
assert runtime
self.engine = runtime.deserialize_cuda_engine(f.read())
assert self.engine
self.context = self.engine.create_execution_context()
assert self.context
# Setup I/O bindings
self.inputs = []
self.outputs = []
self.allocations = []
for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
is_input = False
if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT:
is_input = True
dtype = self.engine.get_tensor_dtype(name)
shape = self.engine.get_tensor_shape(name)
if is_input:
self.batch_size = shape[0]
size = np.dtype(trt.nptype(dtype)).itemsize
for s in shape:
size *= s
allocation = common.cuda_call(cudart.cudaMalloc(size))
binding = {
"index": i,
"name": name,
"dtype": np.dtype(trt.nptype(dtype)),
"shape": list(shape),
"allocation": allocation,
}
self.allocations.append(allocation)
if is_input:
self.inputs.append(binding)
else:
self.outputs.append(binding)
assert self.batch_size > 0
assert len(self.inputs) > 0
assert len(self.outputs) > 0
assert len(self.allocations) > 0
def input_spec(self):
"""
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
return self.inputs[0]["shape"], self.inputs[0]["dtype"]
def output_spec(self):
"""
Get the specs for the output tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the output tensor and its (numpy) datatype.
"""
return self.outputs[0]["shape"], self.outputs[0]["dtype"]
def infer(self, batch, top=1):
"""
Execute inference on a batch of images. The images should already be batched and preprocessed, as prepared by
the ImageBatcher class. Memory copying to and from the GPU device will be performed here.
:param batch: A numpy array holding the image batch.
:param top: The number of classes to return as top_predicitons, in descending order by their score. By default,
setting to one will return the same as the maximum score class. Useful for Top-5 accuracy metrics in validation.
:return: Three items, as numpy arrays for each batch image: The maximum score class, the corresponding maximum
score, and a list of the top N classes and scores.
"""
# Prepare the output data
output = np.zeros(*self.output_spec())
# Process I/O and execute the network
common.memcpy_host_to_device(
self.inputs[0]["allocation"], np.ascontiguousarray(batch)
)
self.context.execute_v2(self.allocations)
common.memcpy_device_to_host(output, self.outputs[0]["allocation"])
# Process the results
classes = np.argmax(output, axis=1)
scores = np.max(output, axis=1)
top = min(top, output.shape[1])
top_classes = np.flip(np.argsort(output, axis=1), axis=1)[:, 0:top]
top_scores = np.flip(np.sort(output, axis=1), axis=1)[:, 0:top]
return classes, scores, [top_classes, top_scores]
def main(args):
trt_infer = TensorRTInfer(args.engine)
batcher = ImageBatcher(
args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor
)
for batch, images in batcher.get_batch():
classes, scores, top = trt_infer.infer(batch)
for i in range(len(images)):
if args.top == 1:
print(images[i], classes[i], scores[i], sep=args.separator)
else:
line = [images[i]]
assert args.top <= top[0].shape[1]
for t in range(args.top):
line.append(str(top[0][i][t]))
for t in range(args.top):
line.append(str(top[1][i][t]))
print(args.separator.join(line))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
parser.add_argument(
"-i",
"--input",
help="The input to infer, either a single image path, or a directory of images",
)
parser.add_argument(
"-t",
"--top",
default=1,
type=int,
help="The amount of top classes and scores to output per image, default: 1",
)
parser.add_argument(
"-s",
"--separator",
default="\t",
help="Separator to use between columns when printing the results, default: \\t",
)
parser.add_argument(
"-p",
"--preprocessor",
default="V2",
choices=["V1", "V1MS", "V2"],
help="Select the image preprocessor to use, either 'V2', 'V1' or 'V1MS', default: V2",
)
args = parser.parse_args()
if not all([args.engine, args.input]):
parser.print_help()
print("\nThese arguments are required: --engine and --input")
sys.exit(1)
main(args)