-
Notifications
You must be signed in to change notification settings - Fork 7
/
config.toml
64 lines (44 loc) · 1.33 KB
/
config.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Neat-EO.pink Configuration
# Input channels configuration
# You can, add several channels blocks to compose your input Tensor. Order is meaningful.
#
# name: dataset subdirectory name
# bands: bands to keep from sub source. Order is meaningful
[[channels]]
name = "images"
bands = [1, 2, 3]
# Output Classes configuration
# Nota: available colors are either CSS3 colors names or #RRGGBB hexadecimal representation.
# Nota: special color name "transparent" could be use on a single class to apply transparency
# Nota: default weight is 1.0 for each class, or 0.0 if a transparent color one.
[[classes]]
title = "Background"
color = "transparent"
[[classes]]
title = "Building"
color = "deeppink"
[[classes]]
title = "Road"
color = "deepskyblue"
[model]
# Neurals Network name
nn = "Albunet"
# Encoder name
encoder = "resnet50"
# Dataset loader name
loader = "SemSeg"
# Model internal input tile size [W, H]
#ts = [512, 512]
[train]
# Pretrained Encoder
#pretrained = true
# Batch size
#bs = 4
# Data Augmentation to apply, to whole input tensor, with associated probability
da = {name="RGB", p=1.0}
# Loss function name
loss = "Lovasz"
# Eval Metrics
metrics = ["IoU", "MCC", "QoD"]
# Optimizer, cf https://pytorch.org/docs/stable/optim.html
#optimizer = {name="Adam", lr=0.0001}