-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl.py
181 lines (140 loc) · 7.26 KB
/
rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import threading
import numpy as np
import numpy.random
import tensorflow as tf
def discounted_rewards(rewards, gamma, bootstrap):
rank = rewards.get_shape().ndims or tf.rank(rewards)
reverse_params = tf.concat(0, [
tf.constant([True]),
tf.fill(tf.expand_dims(rank - 1, 0), False)
])
reverse_rew = tf.reverse(rewards, reverse_params)
summed = tf.scan(lambda a, x: x + gamma * a, reverse_rew, initializer=bootstrap,
parallel_iterations=1, back_prop=False)
return tf.reverse(summed, reverse_params)
def Last(bb):
size = tf.shape(bb)[0]
return tf.reshape(tf.gather(bb, size - 1), [])
DEFAULT_OPTIONS = {
'clip_grad': 5.,
'gamma': 0.99,
'learning_rate': 0.0001,
'eps_decay': 3000,
'rollout': 20,
'threads': 1,
}
class ActorCritic(object):
def __init__(self, env, build_networks, options=DEFAULT_OPTIONS):
self._env = env
self._env_example = env()
self._options = options
state_dim = self._env_example.observation_space.shape[0]
self._graph = tf.Graph()
self._threads = []
with self._graph.as_default(), tf.device('/cpu:0'):
self._state = tf.placeholder(tf.float32, shape=[None, state_dim], name='states')
self._action = tf.placeholder(tf.int64, shape=[None], name='actions')
self._reward = tf.placeholder(tf.float32, shape=[None, 1], name='rewards')
self._done = tf.placeholder(tf.float32, shape=[1], name='done')
self._policy_logits, self._baseline = build_networks(self._env_example, self._state)
self._discount = discounted_rewards(self._reward, options['gamma'],
Last(self._baseline) * (1. - self._done))
self._tf_policy = tf.reshape(tf.multinomial(self._policy_logits, 1), [])
with tf.device('/cpu:0'):
optimizer = tf.train.AdamOptimizer(options['learning_rate'])
advantage = tf.reshape(self._discount, [-1, 1]) - self._baseline
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(self._policy_logits,
tf.reshape(self._action, [-1]))
policy_loss = tf.reduce_mean(tf.mul(cross_entropy, tf.stop_gradient(advantage)))
policy_entropy = tf.reduce_mean(-tf.nn.softmax(self._policy_logits) *
tf.nn.log_softmax(self._policy_logits))
value_loss = 0.5 * tf.reduce_mean(tf.square(advantage))
loss = policy_loss + 0.25 * value_loss - 0.01 * policy_entropy
grads = optimizer.compute_gradients(loss, tf.get_collection(tf.GraphKeys.VARIABLES))
if 'clip_grad' in options:
grads = [(tf.clip_by_norm(g, options['clip_grad']), v)
for g, v in grads]
for grad, var in grads:
tf.histogram_summary(var.name, var)
if grad is not None:
tf.histogram_summary('{}/grad'.format(var.name), grad)
self._global_step = tf.Variable(0, name='global_step', trainable=False)
self._epsilon = 1.0 / (1.0 + tf.cast(self._global_step, tf.float32)
/ options.get('eps_decay', 3000.))
self._train_op = optimizer.apply_gradients(grads, self._global_step)
tf.histogram_summary("Predicted baseline", self._baseline)
tf.scalar_summary("Loss/Actor", policy_loss)
tf.scalar_summary("Loss/Critic", value_loss)
tf.scalar_summary("Loss/Entropy", policy_entropy)
tf.scalar_summary("Loss/Total", loss)
tf.scalar_summary("Epsilon", self._epsilon)
tf.scalar_summary("Done", tf.reduce_mean(self._done))
self._summary_op = tf.merge_all_summaries()
self.sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
def Init(self, run_id):
with self._graph.as_default():
self.sess.run(tf.initialize_all_variables())
self._writer = tf.train.SummaryWriter(
'/media/vertix/UHDD/tmp/tensorflow_logs/{}/{:02d}'.format(self._env_example.spec.id, run_id))
self._coord = tf.train.Coordinator()
def Close(self):
self._coord.request_stop()
self._coord.join(self._threads)
self.sess.close()
def CleanPolicy(self, observation):
return self.sess.run(self._tf_policy,
{self._state:
observation.reshape(1, self._env_example.observation_space.shape[0])})
def EpsilonGreedyPolicy(self, observation):
epsilon = self.sess.run(self._epsilon)
if np.random.rand() < epsilon:
return self._env_example.action_space.sample()
else:
return self.CleanPolicy(observation)
def Learn(self, num_steps):
if any([t.is_alive() for t in self._threads]):
print 'At least one thread is already running!'
return
self._threads = [threading.Thread(target=self.LearnThread, args=(num_steps,))
for _ in xrange(self._options['threads'])]
for t in self._threads:
t.start()
def LearnThread(self, num_steps):
env = self._env()
obs = env.reset()
observations, actions, rewards = [], [], []
done = False
episode_reward, episode_len = 0., 0.
while not self._coord.should_stop():
observations.append(obs)
act = self.CleanPolicy(obs)
# act = self.EpsilonGreedyPolicy(obs)
actions.append(act)
obs, reward, done, _ = env.step(act)
episode_reward += reward
episode_len += 1.
rewards.append(reward)
if done or len(observations) >= self._options.get('rollout', 20):
# TODO(vertix): Use queues to run learn in parallel and not block env.
step = self.Update(observations, actions, rewards, done)
if done:
obs = env.reset()
done = False
self._writer.add_summary(tf.Summary(value=[
tf.Summary.Value(tag='Env/Rewards', simple_value=episode_reward),
tf.Summary.Value(tag='Env/Length', simple_value=episode_len),
]), step)
episode_reward, episode_len = 0., 0.
observations, actions, rewards = [], [], []
if step >= num_steps:
print 'Many steps!'
self._coord.request_stop()
def Update(self, observations, actions, rewards, done):
feed_dict = {self._state: observations,
self._action: actions,
self._reward: np.reshape(rewards, (-1, 1)),
self._done: [1.0 if done else 0.0]}
step, _ = self.sess.run([self._global_step,self._train_op], feed_dict)
if step % 50 == 0:
self._writer.add_summary(self.sess.run(self._summary_op, feed_dict), step)
return step