forked from russdill/bch_verilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbch_sigma_bma_serial.v
200 lines (171 loc) · 4.88 KB
/
bch_sigma_bma_serial.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
* BCH Encode/Decoder Modules
*
* Copyright 2014 - Russ Dill <[email protected]>
* Distributed under 2-clause BSD license as contained in COPYING file.
*/
`timescale 1ns / 1ps
`include "bch_defs.vh"
/*
* serial with inversion
* Berlekamp–Massey algorithm
*
* sigma_i^(r) = sigma_i^(r-1) + d_rp * beta_i^(r) (i = 1 to t-1)
* d_r = summation sigma_i^(r) * S_(2 * r - i + 1) from i = 0 to t
* d_rp = d_p^-1 * d_r
*
* combine above equations:
* d_r = summation (simga_i^(r-1) + d_rp * beta_i^(r)) * S_(2 * r - i + 1) from i = 0 to t
*/
module bch_sigma_bma_serial #(
parameter [`BCH_PARAM_SZ-1:0] P = `BCH_SANE
) (
input clk,
input start,
input [`BCH_SYNDROMES_SZ(P)-1:0] syndromes,
input ack_done,
output reg done = 0,
output ready,
output [`BCH_SIGMA_SZ(P)-1:0] sigma,
output reg [`BCH_ERR_SZ(P)-1:0] err_count = 0
);
`include "bch.vh"
localparam TCQ = 1;
localparam M = `BCH_M(P);
localparam T = `BCH_T(P);
wire [M-1:0] d_r;
wire [M-1:0] d_rp_dual;
wire [T:0] cin;
wire [T:0] sigma_serial; /* 0 bits of each sigma */
wire [M-1:0] syn1 = syndromes[0+:M];
wire [T*M-1:0] _sigma;
wire [M-1:0] sigma_1;
/* because of inversion, sigma0 is always 1 */
assign sigma = {_sigma, {M-1{1'b0}}, 1'b1};
reg [(T+1)*M-1:0] beta = 0;
reg [(T-1)*M-1:0] sigma_last = 0; /* Last sigma values */
reg first_cycle = 0;
reg second_cycle = 0;
reg penult2_cycle = 0;
reg penult1_cycle = 0;
reg last_cycle = 0;
reg first_calc = 0; /* bch_n == 0 */
reg final_calc = 0; /* bch_n == T - 1 */
reg counting = 0;
reg busy = 0;
/* beta(1)(x) = syn1 ? x^2 : x^3 */
wire [M*4-1:0] beta0; /* Initial beta */
assign beta0 = {{{M-1{1'b0}}, !syn1}, {{M-1{1'b0}}, |syn1}, {(M*2){1'b0}}};
/* d_r(0) = 1 + S_1 * x */
wire [(T+1)*M-1:0] d_r0; /* Initial dr */
assign d_r0 = {syn1, {(M-1){1'b0}}, 1'b1};
wire [`BCH_ERR_SZ(P)-1:0] bch_n;
counter #(T+1) u_bch_n_counter(
.clk(clk),
.reset(start),
.ce(last_cycle),
.count(bch_n)
);
wire [log2(M-4)-1:0] count;
counter #(M-4) u_counter(
.clk(clk),
.reset(second_cycle),
.ce(counting),
.count(count)
);
wire [(2*T-1)*M-1:0] syn_shuffled;
bch_syndrome_shuffle #(P) u_bch_syndrome_shuffle(
.clk(clk),
.start(start),
.ce(last_cycle),
.syndromes(syndromes),
.syn_shuffled(syn_shuffled)
);
reg d_r_nonzero = 0;
wire bsel;
assign bsel = d_r_nonzero && bch_n >= err_count;
reg bsel_last = 0;
assign ready = !busy && (!done || ack_done);
always @(posedge clk) begin
if (start)
busy <= #TCQ 1;
else if (penult2_cycle && final_calc)
busy <= #TCQ 0;
if (penult2_cycle && final_calc)
done <= #TCQ 1;
else if (ack_done)
done <= #TCQ 0;
if (last_cycle || start)
final_calc <= #TCQ T == 2 ? first_calc : (bch_n == T - 2);
if (start)
first_calc <= #TCQ 1;
else if (last_cycle)
first_calc <= #TCQ 0;
if (start) begin
beta <= #TCQ beta0;
sigma_last <= #TCQ beta0[2*M+:2*M]; /* beta(1) */
err_count <= #TCQ {{`BCH_ERR_SZ(P)-1{1'b0}}, |syn1};
bsel_last <= #TCQ 1'b1;
end else if (first_cycle) begin
if (bsel)
err_count <= #TCQ 2 * bch_n - err_count + 1;
bsel_last <= #TCQ bsel;
end else if (last_cycle) begin
d_r_nonzero <= #TCQ |d_r;
sigma_last <= #TCQ sigma[0+:(T-1)*M];
/* b^(r+1)(x) = x^2 * (bsel ? sigmal^(r-1)(x) : b_(r)(x)) */
beta[2*M+:(T-1)*M] <= #TCQ bsel_last ?
sigma_last[0*M+:(T-1)*M] :
beta[0*M+:(T-1)*M];
end
penult2_cycle <= #TCQ counting && count == M - 4;
penult1_cycle <= #TCQ penult2_cycle && !final_calc;
last_cycle <= #TCQ penult1_cycle;
first_cycle <= #TCQ last_cycle;
second_cycle <= #TCQ first_cycle || start;
if (second_cycle)
counting <= #TCQ 1;
else if (count == M - 4)
counting <= #TCQ 0;
end
wire [M-1:0] d_p0 = syn1 ? syn1 : 1;
/* d_rp = d_p^-1 * d_r */
finite_divider #(M) u_dinv(
.clk(clk),
.start(start || (first_cycle && bsel && !final_calc)),
.busy(),
.standard_numer(d_r),
/* d_p = S_1 ? S_1 : 1 */
.standard_denom(start ? d_p0 : d_r), /* syn1 is d_p initial value */
.dual_out(d_rp_dual)
);
/* mbN SDBM d_rp * beta_i(r) */
serial_mixed_multiplier_dss #(M, T + 1) u_serial_mixed_multiplier(
.clk(clk),
.start(last_cycle),
.dual_in(d_rp_dual),
.standard_in(beta),
.standard_out(cin)
);
/* Add Beta * drp to sigma (Summation) */
/* sigma_i^(r-1) + d_rp * beta_i^(r) */
wire [T:0] _cin = first_calc ? {T+1{1'b0}} : cin;
finite_serial_adder #(M) u_cN [T:0] (
.clk(clk),
.start(start),
.ce(!last_cycle && !penult1_cycle),
.parallel_in(d_r0),
.serial_in(_cin), /* First time through, we just shift out d_r0 */
.parallel_out({_sigma, sigma_1}),
.serial_out(sigma_serial)
);
/* d_r = summation (sigma_i^(r-1) + d_rp * beta_i^(r)) * S_(2 * r - i + 1) from i = 0 to t */
serial_standard_multiplier #(M, T+1) msm_serial_standard_multiplier(
.clk(clk),
.reset(start || first_cycle),
.ce(!last_cycle),
.parallel_in(syn_shuffled[0+:M*(T+1)]),
.serial_in(sigma_serial),
.out(d_r)
);
endmodule