forked from neetcode-gh/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
0051-n-queens.c
126 lines (104 loc) · 4.45 KB
/
0051-n-queens.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
*/
// An array to traverse all 4 diagonal directions on the chessboard.
int diagonals[][2] = {{1, -1}, {1, 1}, {-1, 1}, {-1, -1}};
// A result-stack to store all possible n-queen solutions at a time on a stack during backtracking.
struct result_stack {
char** chessboard;
struct result_stack* next;
};
// A Node() function to create a new stack node.
struct result_stack* Node() {
struct result_stack* node = (struct result_stack*)malloc(sizeof(struct result_stack));
node -> next = NULL;
node -> chessboard = NULL;
return node;
}
// toggle_queen() function to place and remove any queen on the chessboard by passing in the toggle parameter as 1 or -1.
// toggle == 1 to place a queen at (row, col) on the chessboard. Similarly toggle == -1 to remove a queen from the board.
void toggle_queen(char** chessboard, int n, int row, int col, char toggle) {
for (int i = 0; i < n; i++) chessboard[row][i] += toggle;
for (int j = 0; j < n; j++) chessboard[j][col] += toggle;
for (int x = 0; x < 4; x++) {
int i = row + diagonals[x][0];
int j = col + diagonals[x][1];
while (i >= 0 && i < n && j >= 0 && j < n) {
chessboard[i][j] += toggle;
i += diagonals[x][0];
j += diagonals[x][1];
}
}
chessboard[row][col] -= 3 * toggle;
}
// copy_board() function to copy each possible solution from the chessboard during backtracking.
char** copy_board(char** chessboard, int n) {
char** copy = (char**)malloc(n * sizeof(char*));
for(int i = 0; i < n; i++) {
copy[i] = (char*)malloc((n + 1) * sizeof(char));
for(int j = 0; j < n; j++) {
chessboard[i][j] == -1 ? (copy[i][j] = 'Q') : (copy[i][j] = '.');
}
copy[i][n] = '\0';
}
return copy;
}
// Recursive backtracking method to go through all possible queen placements on the chessboard.
int backtrack(struct result_stack* stack, char** chessboard, int n, int row) {
if (row == n) {
// Push the solution to the stack.
struct result_stack* node = Node(); // create a new stack node for a solution.
node -> chessboard = copy_board(chessboard, n);
node -> next = stack -> next;
stack -> next = node;
return 1;
}
int result_size = 0;
for (int col = 0; col < n; col++) {
if (chessboard[row][col] == 0) {
// Place the queen with toggle = 1.
toggle_queen(chessboard, n, row, col, 1);
result_size += backtrack(stack, chessboard, n, row + 1);
// Backtrack by removing the queen with toggle = -1.
toggle_queen(chessboard, n, row, col, -1);
}
}
return result_size;
}
char *** solveNQueens(int n, int* returnSize, int** returnColumnSizes){
// Create a N x N chessboard for checking all possible queen placement scenarios.
char** chessboard = (char**)malloc(n * sizeof(char*));
for(int i = 0; i < n; i++) {
chessboard[i] = (char*)malloc(n * sizeof(char));
for(int j = 0; j < n; j++) {
chessboard[i][j] = 0;
}
}
// Create an empty stack to collect all possible n-queen solutions during backtracking.
struct result_stack* stack = Node();
// The Backtrack() method will find all possible solutions and stores them on the stack.
// Then returns the total size of the result, which is the total number of possible n-queen solutions.
*returnSize = backtrack(stack, chessboard, n, 0);
// prepare the result array using the *returnSize obtained from backtracking.
char*** result = (char***)malloc(*returnSize * sizeof(char**));
*returnColumnSizes = (int*)malloc(*returnSize * sizeof(int));
// Pop every n-queen solution from the stack and assign them to the result array.
for (int i = 0; i < *returnSize; i++) {
returnColumnSizes[0][i] = n;
result[i] = stack -> next -> chessboard;
struct result_stack* deletenode = stack -> next;
stack -> next = stack -> next -> next;
// free up each stack node after every solution.
free(deletenode);
}
//free up the stack.
free(stack);
// free up the chessboard.
for (int row = 0; row < n; row++) {
free(chessboard[row]);
}
free(chessboard);
return result;
}