forked from samholt/HDTwinGen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
201 lines (186 loc) · 8.21 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import hydra
from omegaconf import DictConfig, OmegaConf
# from torch import multiprocessing
import os
import numpy as np
import random
from collections import defaultdict
import time
import os
import random
import time
import traceback
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
from functools import partial
from copy import deepcopy
from enum import Enum
from utils.logging_utils import create_logger_in_process, generate_log_file_path, Experiment
from utils.exp_utils import seed_all, config_to_dict, dict_to_config
from utils.results_utils import normalize_means, generate_main_results_table
from llm_utils import setup_chat_rate_limiter
from simulate import simulate
from rate_limiter import ChatRateLimiter
@hydra.main(version_base=None, config_path="config", config_name="config.yaml")
def run(config: DictConfig) -> None:
log_path = generate_log_file_path(__file__, log_folder=config.setup.log_dir, config=config)
logger = create_logger_in_process(log_path)
request_limit, token_limit = setup_chat_rate_limiter(config)
rate_limiter = ChatRateLimiter(request_limit=request_limit, token_limit=token_limit) # ChatRateLimiter(request_limit=request_limit, token_limit=token_limit)
config.run.log_path = log_path
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if config.setup.cuda else "cpu"
config.run.device = str(device)
if config.setup.debug_mode:
config.setup.multi_process_results = False
if config.setup.multi_process_results:
multiprocessing.set_start_method('spawn')
config.setup.wandb.track = False
if config.setup.wandb.track:
import wandb
wandb.init(
project=config.setup.wandb.project,
config=config_to_dict,
)
else:
wandb = None
seed_all(0)
logger.info(f'Starting run \t | See log at : {log_path}')
if config.setup.flush_mode:
logger.info(f'[WARNING] In FLUSH MODE -- TEST RUN ONLY')
config.run.episodes = 1
config.setup.seed_start = 0
config.setup.seed_runs = 1
logger.info(f'[Main Config] {config}')
main(config, wandb, logger, rate_limiter)
if config.setup.wandb.track:
wandb.finish()
logger.info('Run over. Fin.')
logger.info(f'[Log found at] {log_path}')
def main(config, wandb, logger, rate_limiter):
if config.setup.multi_process_results:
pool_outer = multiprocessing.Pool(config.setup.multi_process_cores)
args_for_runs = []
t0 = time.perf_counter()
experiment = Experiment[config.setup.experiment]
config.setup.experiment = experiment
if experiment == Experiment.MAIN_TABLE:
for seed in range(config.setup.seed_start, config.setup.seed_runs + config.setup.seed_start):
for env_name in config.setup.envs_to_evaluate:
for method_name in config.setup.methods_to_evaluate:
args_for_runs.append((env_name, method_name, seed, config.run.samples))
elif experiment == Experiment.LESS_SAMPLES:
env_name = 'Cancer'
for seed in range(config.setup.seed_start, config.setup.seed_runs + config.setup.seed_start):
for trajectories in config.setup.trajectories_sweep:
# for env_name in config.setup.envs_to_evaluate:
for method_name in config.setup.methods_to_evaluate:
args_for_runs.append((env_name, method_name, seed, trajectories))
elif experiment == Experiment.OOD_INSIGHT:
env_names = ['Cancer-ood', 'Cancer-iid']
for seed in range(config.setup.seed_start, config.setup.seed_runs + config.setup.seed_start):
for env_name in env_names:
for method_name in config.setup.methods_to_evaluate:
args_for_runs.append((env_name, method_name, seed, config.run.samples))
elif experiment == Experiment.NSDT_ABLATION_NO_CRITIC:
env_name = 'Cancer'
method_name = 'NSDT-no-critic'
for seed in range(config.setup.seed_start, config.setup.seed_runs + config.setup.seed_start):
# for env_name in env_names:
# for method_name in config.setup.methods_to_evaluate:
args_for_runs.append((env_name, method_name, seed, config.run.samples))
elif experiment == Experiment.NSDT_ABLATION_NO_MEMORY:
env_name = 'Cancer'
method_name = 'NSDT-no-memory'
for seed in range(config.setup.seed_start, config.setup.seed_runs + config.setup.seed_start):
# for env_name in env_names:
# for method_name in config.setup.methods_to_evaluate:
args_for_runs.append((env_name, method_name, seed, config.run.samples))
evaluate_policy_single = partial(run_exp_wrapper_outer, config=config, wandb=wandb, rate_limiter=rate_limiter)
results = []
if not config.setup.multi_process_results:
for args_for_run in args_for_runs:
result = evaluate_policy_single(args_for_run)
printable_result = {k : v.tolist() if isinstance(v, np.ndarray) else v for k,v in result.items()}
logger.info(f'[Exp evaluation complete] {printable_result}')
results.append(result)
else:
for i, result in tqdm(enumerate(pool_outer.imap_unordered(evaluate_policy_single, args_for_runs)), total=len(args_for_runs), smoothing=0):
printable_result = {k : v.tolist() if isinstance(v, np.ndarray) else v for k,v in result.items()}
logger.info(f'[Exp evaluation complete] {printable_result}')
results.append(result)
time_taken = time.perf_counter() - t0
logger.info(f'Time taken for all runs: {time_taken}s\t| {time_taken/60.0} minutes')
if config.setup.multi_process_results:
pool_outer.close()
logger.info(f'[Log found at] {config.run.log_path}')
df_results = pd.DataFrame(results)
tables = generate_main_results_table(df_results)
logger.info(f'Tables: {tables}')
print('')
# print(table_str)
print('fin.')
def run_exp_wrapper(args, logger, **kwargs):
(env_name, method_name, seed, trajectories) = args
seed_all(seed)
config = kwargs['config']
config = dict_to_config(deepcopy(OmegaConf.to_container(config, resolve=True)))
if 'GP' == method_name:
trajectories = 24
if 'Dataset' in env_name:
config.run.pytorch_as_optimizer.batch_size = 1
trajectories = 1
config.run.trajectories = trajectories
if config.run.pytorch_as_optimizer.batch_size > trajectories:
config.run.pytorch_as_optimizer.batch_size = trajectories
kwargs['config'] = config
result = run_exp(env_name=env_name,
method_name=method_name,
seed=seed,
logger=logger,
**kwargs)
result['errored'] = False
return result
def run_exp_wrapper_outer(args, **kwargs):
(env_name, method_name, seed, trajectories) = args
config = kwargs['config']
logger = create_logger_in_process(config.run.log_path)
logger.info(f'[Now evaluating exp] {args}')
if config.setup.debug_mode:
result = run_exp_wrapper(args, logger, **kwargs)
else:
try:
result = run_exp_wrapper(args, logger, **kwargs)
except Exception as e:
logger.exception(f'[Error] {e}')
logger.info(f"[Failed evaluating exp] {args}\t| error={e}")
traceback.print_exc()
result = {'errored': True}
print('')
result.update({'env_name': env_name, 'seed': seed, 'method_name': method_name})
return result
def run_exp(env_name,
method_name,
seed,
logger,
rate_limiter,
config={},
wandb=None):
logger.info(f'Running {env_name} {method_name} {seed}')
t00 = time.perf_counter()
result = simulate(env_name,
method_name,
seed,
logger,
rate_limiter,
config,
wandb)
seconds_taken = time.perf_counter() - t00
result.update({'method': method_name, 'seed': seed, 'seconds_taken': seconds_taken, 'experiment': config.setup.experiment.name})
return result
if __name__ == "__main__":
run()