-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
210 lines (157 loc) · 6.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torch
import config
MODE = {
"left-up" : {
"crop_x" : config.patch_size // 2,
"crop_y" : config.patch_size // 2,
"pad" : (0, 0 , config.patch_size // 2, config.patch_size // 2)
},
"right-up" : {
"crop_x" : 0,
"crop_y" : config.patch_size // 2,
"pad" : (config.patch_size // 2, 0, 0, config.patch_size // 2),
},
"left-down" : {
"crop_x" : config.patch_size // 2,
"crop_y" : 0,
"pad" : (0, config.patch_size // 2, config.patch_size // 2, 0),
},
"right-down" : {
"crop_x" : 0,
"crop_y" : 0,
"pad" : (config.patch_size // 2, config.patch_size // 2, 0, 0),
},
}
class ShiftedPatchTokenizer(nn.Module):
def __init__(self, image_size, patch_size, c_out, num_classes=10):
super().__init__()
if image_size % patch_size != 0:
raise ValueError("Image size must be divisible by patch size. Got (32 and 8)")
self.patch_size = patch_size
self.image_size = image_size
num_patches = (image_size // patch_size)**2
self.num_patches = num_patches
c_in = int(5*3*patch_size**2)
self.linear = nn.Linear(c_in, c_out, bias=False)
self.layer_norm = nn.LayerNorm(c_in)
self.class_embedding = nn.Embedding(num_classes, c_out)
self.pos_embedding = nn.Embedding(num_patches + 1, c_out)
def forward(self, x):
"""
x : (B, c, w, h)
out : (B, N, N*c*P**2)
"""
shifts = self._shift_and_crop(x)
patches = self._patch_image(shifts)
out = self.linear(self.layer_norm(patches))
pos_token = self.pos_embedding(torch.arange(0, self.num_patches + 1, device=config.device)[None, :].type(torch.long))
out = torch.concat([torch.zeros(out.shape[0], 1, out.shape[-1], device=config.device),out], dim=1) + pos_token
return out
def _patch_image(self, images):
"""
images : (B, 5, c, w, h)
Output : patches : (B, 5, N*c*P**2)
"""
patches = []
for row_idx in range(0, self.image_size, self.patch_size):
for col_idx in range(0, self.image_size, self.patch_size):
patch = images[:, :, :, row_idx: row_idx + self.patch_size, col_idx: col_idx + self.patch_size]
patches.append(patch)
patches = torch.stack(patches, dim=1) # (B, N, 5, c, P, P)
B, N, S, c, p, _ = patches.shape
patches = patches.view(B, N, S*c*p*p) # (B, S+1, N*c*P**2)
return patches
def _shift_and_crop(self, images):
"""
Args : images : (B, c, w, h)
Ouptut : (B, 5, w, h, c)
"""
shifted = [images]
for mode in MODE:
crop = torchvision.transforms.functional.crop(
images,
MODE[mode]["crop_x"],
MODE[mode]["crop_y"],
self.image_size - self.patch_size//2,
self.image_size - self.patch_size//2
)
pad = torchvision.transforms.functional.pad(crop, padding=MODE[mode]["pad"])
shifted.append(pad)
shifted = torch.stack(shifted, dim=1) # (B, 5, c, w, h)
return shifted
class SelfAttentionLSA(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.query = nn.Linear(c_in, c_out, bias=False)
self.key = nn.Linear(c_in, c_out, bias=False)
self.value = nn.Linear(c_in, c_out, bias=False)
self.temperature = nn.Parameter(torch.sqrt(torch.tensor(c_out, dtype=torch.float32)), requires_grad=True)
def forward(self, x):
"""
x : (B, N, c_in)
out : (B, N, c_out)
"""
q = self.query(x) # (B, N, c_out)
k = self.key(x) # (B, N, c_out)
v = self.value(x) # (B, N, c_out)
N = q.shape[1]
diag = torch.eye(N, device=config.device)[None, :]
diag[diag == 1] = float("-inf")
diag[diag == 0] = 1
attn = (q @ k.transpose(-1, -2)) / self.temperature # (B, N, N)
attn = attn * diag
attn_prob = F.softmax(attn, dim=1) @ v
return attn_prob
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, c_in, c_out):
if c_out % num_heads != 0:
raise ValueError(f"You cannot divide output shape of {c_out} into {num_heads} heads")
super().__init__()
self.multi_head = nn.ModuleList([SelfAttentionLSA(c_in, c_out // num_heads) for _ in range(num_heads)])
def forward(self, x):
return torch.concat([sa(x) for sa in self.multi_head], dim=-1)
class FeedForward(nn.Module):
def __init__(self, c_in, c_out, dropout):
super().__init__()
self.linear1 = nn.Linear(c_in, c_out)
self.linear2 = nn.Linear(c_out, c_out)
self.dropout = nn.Dropout(dropout)
self.gelu = nn.GELU()
def forward(self, x):
x = self.gelu(self.linear1(x))
out = self.dropout(self.linear2(x))
return out
class AttentionBlock(nn.Module):
def __init__(self, num_heads, d_block, dropout):
super().__init__()
self.layer_norm1 = nn.LayerNorm(d_block)
self.layer_norm2 = nn.LayerNorm(d_block)
self.layer_norm3 = nn.LayerNorm(d_block)
self.multi_head = MultiHeadAttention(num_heads, d_block, d_block)
self.mlp = FeedForward(d_block, d_block, dropout)
def forward(self, x):
x1 = self.multi_head(self.layer_norm1(x)) + x
x2 = self.mlp(self.layer_norm2(x1)) + x1
out = self.layer_norm3(x2)
return out
class ViTLSA(nn.Module):
def __init__(self, num_heads, num_blocks, d_model, num_classes, dropout=0.2):
super().__init__()
self.shift_patch_tokenizer = ShiftedPatchTokenizer(config.image_size, config.patch_size, d_model, num_classes)
self.blocks = nn.Sequential(*[AttentionBlock(num_heads,d_model, dropout) for _ in range(num_blocks)])
self.dropout = nn.Dropout(0.2)
num_patches = (config.image_size // config.patch_size)**2
self.final_layer = nn.Linear(d_model * (num_patches+1), num_classes)
def forward(self, x):
x = self.shift_patch_tokenizer(x)
out = self.blocks(x)
B, T, d = out.shape
out = out.view(B, T*d)
out = self.dropout(out)
out = self.final_layer(out)
return out
def get_number_parameters(self):
return sum(p.numel() for p in self.parameters() if p.requires_grad)