-
Notifications
You must be signed in to change notification settings - Fork 215
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: Linear Regression online spmd support (#2846)
- Loading branch information
Showing
8 changed files
with
336 additions
and
125 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
51 changes: 51 additions & 0 deletions
51
cpp/oneapi/dal/algo/linear_regression/backend/gpu/finalize_train_kernel_norm_eq_impl.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
/******************************************************************************* | ||
* Copyright contributors to the oneDAL project | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#pragma once | ||
|
||
#include "oneapi/dal/algo/linear_regression/backend/gpu/finalize_train_kernel.hpp" | ||
#include "oneapi/dal/backend/primitives/utils.hpp" | ||
|
||
#ifdef ONEDAL_DATA_PARALLEL | ||
|
||
namespace oneapi::dal::linear_regression::backend { | ||
|
||
namespace bk = dal::backend; | ||
|
||
template <typename Float, typename Task> | ||
class finalize_train_kernel_norm_eq_impl { | ||
using comm_t = bk::communicator<spmd::device_memory_access::usm>; | ||
using input_t = partial_train_result<Task>; | ||
using result_t = train_result<Task>; | ||
using descriptor_t = detail::descriptor_base<Task>; | ||
using train_parameters_t = detail::train_parameters<Task>; | ||
|
||
public: | ||
finalize_train_kernel_norm_eq_impl(const bk::context_gpu& ctx) | ||
: q(ctx.get_queue()), | ||
comm_(ctx.get_communicator()) {} | ||
result_t operator()(const descriptor_t& desc, | ||
const train_parameters_t& params, | ||
const input_t& input); | ||
|
||
private: | ||
sycl::queue q; | ||
comm_t comm_; | ||
}; | ||
|
||
} // namespace oneapi::dal::linear_regression::backend | ||
|
||
#endif // ONEDAL_DATA_PARALLEL |
127 changes: 127 additions & 0 deletions
127
cpp/oneapi/dal/algo/linear_regression/backend/gpu/finalize_train_kernel_norm_eq_impl_dpc.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
/******************************************************************************* | ||
* Copyright contributors to the oneDAL project | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#include "oneapi/dal/algo/linear_regression/backend/gpu/finalize_train_kernel_norm_eq_impl.hpp" | ||
#include "oneapi/dal/algo/linear_regression/backend/gpu/misc.hpp" | ||
#include "oneapi/dal/algo/linear_regression/backend/model_impl.hpp" | ||
|
||
#include "oneapi/dal/backend/primitives/lapack.hpp" | ||
|
||
namespace oneapi::dal::linear_regression::backend { | ||
|
||
namespace be = dal::backend; | ||
namespace pr = be::primitives; | ||
|
||
using be::context_gpu; | ||
|
||
template <typename Float, typename Task> | ||
train_result<Task> finalize_train_kernel_norm_eq_impl<Float, Task>::operator()( | ||
const detail::descriptor_base<Task>& desc, | ||
const detail::train_parameters<Task>& params, | ||
const partial_train_result<Task>& input) { | ||
using dal::detail::check_mul_overflow; | ||
|
||
using model_t = model<Task>; | ||
using model_impl_t = detail::model_impl<Task>; | ||
|
||
const bool compute_intercept = desc.get_compute_intercept(); | ||
|
||
constexpr auto uplo = pr::mkl::uplo::upper; | ||
constexpr auto alloc = sycl::usm::alloc::device; | ||
|
||
const auto response_count = input.get_partial_xty().get_row_count(); | ||
const auto ext_feature_count = input.get_partial_xty().get_column_count(); | ||
const auto feature_count = ext_feature_count - compute_intercept; | ||
|
||
const pr::ndshape<2> xtx_shape{ ext_feature_count, ext_feature_count }; | ||
|
||
const auto xtx_nd = | ||
pr::table2ndarray<Float>(q, input.get_partial_xtx(), sycl::usm::alloc::device); | ||
const auto xty_nd = pr::table2ndarray<Float, pr::ndorder::f>(q, | ||
input.get_partial_xty(), | ||
sycl::usm::alloc::device); | ||
|
||
const pr::ndshape<2> betas_shape{ response_count, feature_count + 1 }; | ||
|
||
const auto betas_size = check_mul_overflow(response_count, feature_count + 1); | ||
auto betas_arr = array<Float>::zeros(q, betas_size, alloc); | ||
|
||
if (comm_.get_rank_count() > 1) { | ||
{ | ||
ONEDAL_PROFILER_TASK(xtx_allreduce); | ||
auto xtx_arr = | ||
dal::array<Float>::wrap(q, xtx_nd.get_mutable_data(), xtx_nd.get_count()); | ||
comm_.allreduce(xtx_arr).wait(); | ||
} | ||
{ | ||
ONEDAL_PROFILER_TASK(xty_allreduce); | ||
auto xty_arr = | ||
dal::array<Float>::wrap(q, xty_nd.get_mutable_data(), xty_nd.get_count()); | ||
comm_.allreduce(xty_arr).wait(); | ||
} | ||
} | ||
|
||
double alpha = desc.get_alpha(); | ||
sycl::event ridge_event; | ||
if (alpha != 0.0) { | ||
ridge_event = add_ridge_penalty<Float>(q, xtx_nd, compute_intercept, alpha); | ||
} | ||
|
||
auto nxtx = pr::ndarray<Float, 2>::empty(q, xtx_shape, alloc); | ||
auto nxty = pr::ndview<Float, 2>::wrap_mutable(betas_arr, betas_shape); | ||
auto solve_event = | ||
pr::solve_system<uplo>(q, compute_intercept, xtx_nd, xty_nd, nxtx, nxty, { ridge_event }); | ||
sycl::event::wait_and_throw({ solve_event }); | ||
|
||
auto betas = homogen_table::wrap(betas_arr, response_count, feature_count + 1); | ||
|
||
const auto model_impl = std::make_shared<model_impl_t>(betas); | ||
const auto model = dal::detail::make_private<model_t>(model_impl); | ||
|
||
const auto options = desc.get_result_options(); | ||
auto result = train_result<Task>().set_model(model).set_result_options(options); | ||
|
||
if (options.test(result_options::intercept)) { | ||
auto arr = array<Float>::zeros(q, response_count, alloc); | ||
auto dst = pr::ndview<Float, 2>::wrap_mutable(arr, { 1l, response_count }); | ||
const auto src = nxty.get_col_slice(0l, 1l).t(); | ||
|
||
pr::copy(q, dst, src).wait_and_throw(); | ||
|
||
auto intercept = homogen_table::wrap(arr, 1l, response_count); | ||
result.set_intercept(intercept); | ||
} | ||
|
||
if (options.test(result_options::coefficients)) { | ||
const auto size = check_mul_overflow(response_count, feature_count); | ||
|
||
auto arr = array<Float>::zeros(q, size, alloc); | ||
const auto src = nxty.get_col_slice(1l, feature_count + 1); | ||
auto dst = pr::ndview<Float, 2>::wrap_mutable(arr, { response_count, feature_count }); | ||
|
||
pr::copy(q, dst, src).wait_and_throw(); | ||
|
||
auto coefficients = homogen_table::wrap(arr, response_count, feature_count); | ||
result.set_coefficients(coefficients); | ||
} | ||
|
||
return result; | ||
} | ||
|
||
template class finalize_train_kernel_norm_eq_impl<float, task::regression>; | ||
template class finalize_train_kernel_norm_eq_impl<double, task::regression>; | ||
|
||
} // namespace oneapi::dal::linear_regression::backend |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.