-
Notifications
You must be signed in to change notification settings - Fork 2
/
VIDMAP_train.py
330 lines (258 loc) · 11.5 KB
/
VIDMAP_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import tensorflow as tf
import h5py
import skvideo.utils
import numpy as np
import sklearn.metrics
import sys
import hashlib
try:
import Queue
except:
import queue as Queue
import threading
import os
from sklearn.externals import joblib
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
sentinel = object()
def md5_for_file(fname, block_size=512):
f = open(fname, 'rb')
md5 = hashlib.md5()
data = f.read(block_size)
md5.update(data)
return md5.hexdigest()
def preprocess(data, atype):
if atype == "droppedFrames":
processed_data = np.zeros((data.shape[0], data.shape[1]-10, data.shape[2]-10, 3))
for i in range(data.shape[0]):
for j in range(3):
a, b, c = skvideo.utils.compute_image_mscn_transform(data[i, :, :, j], avg_window=win, C=1.0)
a = a[5:-5, 5:-5]
processed_data[i, :, :, j] = a
else:
processed_data = np.zeros((data.shape[0], data.shape[1]-10, data.shape[1]-10, 2))
for i in range(data.shape[0]):
a, b, c = skvideo.utils.compute_image_mscn_transform(data[i, :, :], avg_window=win, C=1.0)
a = a[5:-5, 5:-5]
b = b[5:-5, 5:-5]
# find max point in b
processed_data[i, :, :, 0] = a #/255.0
processed_data[i, :, :, 1] = b/255.0
return processed_data
def load_task(hdf5_patches, hdf5_labels, train_idx1, batch_size, atype, vtype):
half_batch = batch_size//2
n_iterations = np.min((
len(train_idx1)/(half_batch),
len(train_idx2)/(half_batch),
))
n_iterations = np.int(n_iterations)
for M in range(0, n_iterations):
lst1 = np.sort(train_idx1[M*(half_batch):(M+1)*(half_batch)]).tolist()
lst2 = np.sort(train_idx2[M*(half_batch):(M+1)*(half_batch)]).tolist()
X_batch1 = hdf5_patches[lst1]
X_batch2 = hdf5_patches[lst2]
X_batch = np.vstack((X_batch1, X_batch2))
labelr = np.hstack((hdf5_labels[lst1].astype(np.uint8), hdf5_labels[lst2].astype(np.uint8)))
labelr[labelr>0] = 1
y_labels = np.eye(2)[labelr]
if atype in ["hitsh264", "hitsmpeg2", "combing"]:
if vtype == "framediff":
X_batch = X_batch[:, 1, :, :] - X_batch[:, 0, :, :]
else:
X_batch = X_batch[:, 1, :, :]
X_batchp = preprocess(X_batch, atype)
elif atype == "droppedFrames":
X_batch1 = X_batch[:, 1, :, :] - X_batch[:, 0, :, :]
X_batch2 = X_batch[:, 2, :, :] - X_batch[:, 1, :, :]
X_batch3 = X_batch[:, 3, :, :] - X_batch[:, 2, :, :]
X_batchn = np.zeros((X_batch1.shape[0],X_batch1.shape[1], X_batch1.shape[2], 3))
X_batchn[:, :, :, 0] = X_batch1
X_batchn[:, :, :, 1] = X_batch2
X_batchn[:, :, :, 2] = X_batch3
X_batchp = preprocess(X_batchn, atype)
else:
if vtype == "framediff":
X_batch = X_batch[:, 1, :, :] - X_batch[:, 0, :, :]
else:
X_batch = X_batch[:, 0, :, :]
X_batchp = preprocess(X_batch, atype)
# randomly flip horizontally/vertically
# to reduce overfitting to training set
# if your artifact depends on left/right or
# up/down orientation, you MUST disable this
ridx = np.random.randint(0, 4)
if ridx == 0:
X_batchp = X_batchp[:, ::-1, :]
if ridx == 1:
X_batchp = X_batchp[:, :, ::-1]
if ridx == 2:
X_batchp = X_batchp[:, ::-1, ::-1]
data_queue.put([X_batchp, y_labels], True)
# tell the other side we're "done"
data_queue.put(sentinel, True)
md5lut = {}
md5lut['aliasing'] = "d3ba75e2bd0ffeba7ab485acc442609c"
md5lut['compression'] = "77eafeb723665de10c344b3c8a531f02"
md5lut['combing'] = "aceb56fd2bfa147325b0788583698d82"
md5lut['contour'] = "186e1f9aba010a34a9cc4ee929a08c2b"
md5lut['upscaling'] = "7d279eb019c685452d95c5357adaabaf"
md5lut['aspectratio'] = "0f19de01c42cd64fee819726cd5648c5"
md5lut['banding'] = "3bc771e239ffd95b9e03384c0ba696a9"
md5lut['droppedFrames'] = "4ce75b3e252ccbe40d2a2a6bf53b2833"
md5lut['hitsh264'] = "3727cbcec85a1ac11bc8cf650b8f20af"
md5lut['hitsmpeg2'] = "c47d84cc4ada2f11e003fbfafea3e643"
lutdata = {}
lutdata['aliasing'] = ["/home/todd/aliasingdataset_sf4.hdf5",249288]
lutdata['compression'] = ["/home/todd/compressiondataset.hdf5",63012]
lutdata['combing'] = ["/home/todd/combingdataset_sf.hdf5",61653]
lutdata['contour'] = ["/home/todd/contourdataset_sf.hdf5",730600]
lutdata['upscaling'] = ["/home/todd/upscalingdataset_sf.hdf5",129428]
lutdata['aspectratio'] = ["/home/todd/aspectratiodataset_sf.hdf5",34360]
lutdata['banding'] = ["/home/todd/bandingdataset_sf.hdf5", 64925]
lutdata['droppedFrames'] = ["/mnt/droppedFramesdataset_sf.hdf5", 51562]
lutdata['hitsh264'] = ["/home/todd/hitsdataset_sf_h264.hdf5", 62417]
lutdata['hitsmpeg2'] = ["/home/todd/hitsdataset_sf_mpeg2.hdf5", 59941]
if __name__ == "__main__":
if len(sys.argv) == 1:
print("Usage:")
print(" python VIDMAP_train.py [artifact] [single/framediff/2layer]")
exit(0)
atype = sys.argv[1]
VIDMAPtype = sys.argv[2]
outputdir = VIDMAPtype
win = np.array(skvideo.utils.gen_gauss_window(2, 7.0/6.0))
h5py_file = lutdata[atype][0]
print("dataset hash: ", md5_for_file(lutdata[atype][0], block_size=128*10000))
assert (md5_for_file(lutdata[atype][0], block_size=128*10000) == md5lut[atype])
f = h5py.File(h5py_file, mode='r')
os.system("mkdir -p " + outputdir + "/" + atype + "/")
f = h5py.File(h5py_file, mode='r')
image_patches = f['image_patches']
print(f.keys())
if "label" in f:
glabels = f['label']
else:
glabels = f['labels']
sets = f['set']
n_totalpatches, n_channels, patch_height, patch_width = image_patches.shape
batch_size = 10
# remove part of the border due to pre-processing
patch_height -= 10
patch_width -= 10
n_totalpatches = lutdata[atype][1]
train_indices1 = np.arange(n_totalpatches)[(sets[:n_totalpatches] == 0) & (glabels[:n_totalpatches] == 0)]
train_indices2 = np.arange(n_totalpatches)[(sets[:n_totalpatches] == 0) & (glabels[:n_totalpatches] == 1)]
halfbatch = batch_size/2
n_iterations = np.min((
len(train_indices1)/(halfbatch),
len(train_indices2)/(halfbatch),
))
n_iterations = np.int(n_iterations)
sess = tf.InteractiveSession()
n_C = 2
if atype == "droppedFrames":
n_C = 3
xinput = tf.placeholder(tf.float32, shape=[batch_size, patch_height, patch_width, n_C])
yinput = tf.placeholder(tf.float32, shape=[None, 2])
def gen_network(x, y, n_filters=10, atype="", vtype=""):
n_C = 2
if atype == "droppedFrames":
n_C = 3
W1_class0 = tf.Variable(tf.random_normal([11, 11, n_C, n_filters], stddev=0.0001))
W1_class1 = tf.Variable(tf.random_normal([11, 11, n_C, n_filters], stddev=0.0001))
b1_class0 = tf.Variable(tf.random_normal([n_filters], stddev=0.001))
b1_class1 = tf.Variable(tf.random_normal([n_filters], stddev=0.001))
if vtype != "2layer":
W2_class0 = tf.Variable(tf.random_normal([11, 11, n_filters, n_filters], stddev=0.0001))
W2_class1 = tf.Variable(tf.random_normal([11, 11, n_filters, n_filters], stddev=0.0001))
b2_class0 = tf.Variable(tf.random_normal([n_filters], stddev=0.001))
b2_class1 = tf.Variable(tf.random_normal([n_filters], stddev=0.001))
W3_class0 = tf.Variable(tf.random_normal([11, 11, n_filters, 1], stddev=0.0001))
W3_class1 = tf.Variable(tf.random_normal([11, 11, n_filters, 1], stddev=0.0001))
b3_class0 = tf.Variable(tf.random_normal([1], stddev=0.001))
b3_class1 = tf.Variable(tf.random_normal([1], stddev=0.001))
if vtype == "2layer":
var = [W1_class0, W1_class1, b1_class0, b1_class1, W3_class0, W3_class1, b3_class0, b3_class1]
else:
var = [W1_class0, W1_class1, b1_class0, b1_class1, W2_class0, W2_class1, b2_class0, b2_class1, W3_class0, W3_class1, b3_class0, b3_class1]
net_code_class0 = tf.nn.conv2d(x, W1_class0, strides=[1, 1, 1, 1], padding='VALID') + b1_class0
net_code_class0 = tf.contrib.layers.group_norm(net_code_class0, groups=n_filters)
net_code_class0 = tf.nn.relu(net_code_class0)
if vtype != "2layer":
net_code_class0 = tf.nn.conv2d(net_code_class0, W2_class0, strides=[1, 1, 1, 1], padding='VALID') + b2_class0
net_code_class0 = tf.contrib.layers.group_norm(net_code_class0, groups=n_filters)
net_code_class0 = tf.nn.relu(net_code_class0)
net_code_class0 = tf.nn.conv2d(net_code_class0, W3_class0, strides=[1, 1, 1, 1], padding='VALID') + b3_class0
net_code_class1 = tf.nn.conv2d(x, W1_class1, strides=[1, 1, 1, 1], padding='VALID') + b1_class1
net_code_class1 = tf.contrib.layers.group_norm(net_code_class1, groups=n_filters)
net_code_class1 = tf.nn.relu(net_code_class1)
if vtype != "2layer":
net_code_class1 = tf.nn.conv2d(net_code_class1, W2_class1, strides=[1, 1, 1, 1], padding='VALID') + b2_class1
net_code_class1 = tf.contrib.layers.group_norm(net_code_class1, groups=n_filters)
net_code_class1 = tf.nn.relu(net_code_class1)
net_code_class1 = tf.nn.conv2d(net_code_class1, W3_class1, strides=[1, 1, 1, 1], padding='VALID') + b3_class1
net_flat_class0 = tf.reshape(net_code_class0, [batch_size, -1])
net_flat_class1 = tf.reshape(net_code_class1, [batch_size, -1, 1])
net_flat_mask = tf.zeros_like(net_flat_class0)
total_logits = tf.zeros((batch_size, 2), dtype=tf.float32)
loss = 0
idx = []
numScales = 1
d0 = net_code_class0
d1 = net_code_class1
tmp = net_code_class1 - net_code_class0
tmp = tf.reshape(tmp, [batch_size, -1])
d0 = tf.reshape(d0, [batch_size, -1])
d1 = tf.reshape(d1, [batch_size, -1])
maxidx1 = tf.argmax(tmp, axis=1)
maxidx1 = tf.cast(maxidx1, tf.int32)
logits1 = []
for j in range(batch_size):
logits1.append([d0[j, maxidx1[j]], d1[j, maxidx1[j]]])
logits1 = tf.stack(logits1)
#loss += tf.losses.softmax_cross_entropy(y, logits1)
loss += tf.losses.hinge_loss(y, logits1)
total_logits += logits1
probimg = tf.nn.softmax(tf.stack([net_code_class0[:, :, :, 0], net_code_class1[:, :, :, 0]], axis=3))
probimg = probimg[:, :, :, 1]
probabilities = tf.nn.softmax(total_logits)
return loss, probabilities, var
loss1, prob1, var = gen_network(xinput, yinput, n_filters=50, atype=atype, vtype=VIDMAPtype)
train_step1 = tf.train.AdamOptimizer(1e-4).minimize(loss1)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=None)
for EPOCH in range(0, 1000):
if EPOCH > 1:
saver.save(sess, outputdir + "/%s/trained.ckpt" % (atype,))
np.random.shuffle(train_indices1)
np.random.shuffle(train_indices2)
data_queue = Queue.Queue(2)
p = threading.Thread(target=load_task, args=(image_patches, glabels, train_indices1, train_indices2, batch_size, atype, VIDMAPtype))
p.daemon = True
p.start()
M = 0
losses = []
evall = []
while True:
if ((M % 100) == 0):
print(M, n_iterations)
batch = data_queue.get(True)
data_queue.task_done()
if batch is sentinel:
break # we're done now!
_, l1, p1 = sess.run([train_step1, loss1, prob1], feed_dict={xinput: batch[0], yinput: batch[1]})
losses.append([l1])
stack = np.hstack((
np.argmax(p1, axis=1).reshape(-1, 1),
np.argmax(batch[1], axis=1).reshape(-1, 1)
))
if evall == []:
evall = stack
else:
evall = np.vstack((evall, stack))
M += 1
losses = np.array(losses)
print("losses: ", np.mean(losses, axis=0))
evall = np.array(evall)
f1_p1 = sklearn.metrics.f1_score(evall[:,1], evall[:, 0])
acc_p1 = np.mean(evall[:,1] == evall[:, 0])
print("n=50 (%0.4f, %0.4f)" % (f1_p1, acc_p1))