forked from JoshuaEbenezer/ChipQA-0
-
Notifications
You must be signed in to change notification settings - Fork 1
/
svr.py
225 lines (176 loc) · 8.46 KB
/
svr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
from sklearn.model_selection import PredefinedSplit,KFold
from joblib import Parallel, delayed
from scipy.io import savemat
from sklearn.linear_model import LinearRegression
import glob
import os
from matplotlib import pyplot as plt
import pandas as pd
import math
import scipy
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import svm
from sklearn import preprocessing
from joblib import dump, load
from scipy.stats.mstats import gmean
from scipy.stats import spearmanr
import random
import argparse
random_seed = 21
dataset = 'apv'
parser = argparse.ArgumentParser(description='Run an SVR on LIVE-APV dataset with a feature and score dictionary generated by zip_names_and_scores.py')
parser.add_argument('input_feature_file',help='File containing input features and scores and names generated by zip_names_and_scores.py (extension: .z)')
parser.add_argument('outfolder',help='Folder where output predictions and output scores for each run are stored')
args = parser.parse_args()
sts_kurt_feats = load(args.input_feature_file)
chipqa_features = np.asarray(sts_kurt_feats['features'])
print(chipqa_features.shape)
#sts_kurt = chipqa_features[:,:109]
#chroma_avg = chipqa_features[:,109:125]
#grad_avg = chipqa_features[:,125:157]
#sigma_avg = chipqa_features[:,157:165]
#
#chroma_sd = chipqa_features[:,165:181]
#grad_sd = chipqa_features[:,181:213]
#sigma_sd = chipqa_features[:,213:221]
sts_kurt_features = chipqa_features #np.concatenate((chroma_avg,grad_avg,sigma_avg,chroma_sd,grad_sd,sigma_sd,sts_kurt),axis=1)
print(sts_kurt_features[0])
print(sts_kurt_features.shape)
scores = np.asarray(sts_kurt_feats["scores"],dtype=np.float32)
print(scores)
names = sts_kurt_feats["names"]
count=0
apv_sts_kurt_feats = []
live_sts_kurt_feats = []
live_scores = []
apv_scores = []
for index,n in enumerate(names):
last = n[-3]
if(last=='p'):
apv_sts_kurt_feats.append(sts_kurt_features[index])
apv_scores.append(scores[index])
else:
live_sts_kurt_feats.append(sts_kurt_features[index])
live_scores.append(scores[index])
live_feats=np.asarray(live_sts_kurt_feats)
apv_feats =np.asarray(apv_sts_kurt_feats)
live_scores = np.asarray(live_scores)
apv_scores = np.asarray(apv_scores)
print(live_feats.shape)
print(apv_feats.shape)
scores = np.squeeze(scores.astype(np.float32))
srocc_t = []
outfolder =args.outfolder
count=0
def only_train():
X_train = np.concatenate((apv_feats,live_feats),0)
y_train = np.concatenate((apv_scores,live_scores),0)
X_train = scaler.fit_transform(X_train)
grid_svr = GridSearchCV(svm.SVR(),param_grid = {"gamma":np.logspace(-8,1,10),"C":np.logspace(1,10,10,base=2)},cv=5)
grid_svr.fit(X_train, y_train)
preds = grid_svr.predict(X_train)
srocc_test = spearmanr(preds,y_train)
print(srocc_test)
dump(grid_svr,"LIVE_Livestream_trained_svr.z")
dump(scaler,"LIVE_Livestream_fitted_scaler.z")
return
def apvd_train(split_no):
X_train, X_test, y_train, y_test = train_test_split(apv_feats, apv_scores, test_size=0.20, random_state=split_no)
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
grid_svr = GridSearchCV(svm.SVR(),param_grid = {"gamma":np.logspace(-8,1,10),"C":np.logspace(1,10,10,base=2)},cv=5)
grid_svr.fit(X_train, y_train)
preds = grid_svr.predict(X_test)
srocc_test = spearmanr(preds,y_test)
return srocc_test[0]
def apv_train(split_no):
all_indices = np.arange(0,315)
content_indices = np.arange(45)
np.random.shuffle(content_indices) # randomly shuffle content indices
# get the test unique content indices
indices = content_indices[-9:]
val_feats = []
val_scores =[]
val_indices = []
# Gather the indices for the test set (this includes reference+distorted)
for index in indices:
val_indices.append(np.arange(int(index*7),int((index+1)*7)))
rand_val_indices = np.reshape(val_indices,(63,))
val_feats = live_feats[rand_val_indices,:]
val_scores = live_scores[rand_val_indices]
# Get the training indices
rand_train_indices = np.delete(all_indices,rand_val_indices)
# Get the training features
rand_train_feats = live_feats[rand_train_indices,:]
rand_train_scores = live_scores[rand_train_indices]
# Combine LIVE and APV train and test set
X_train =rand_train_feats #np.concatenate((apv_train,rand_train_feats),axis=0)
y_train =rand_train_scores #np.concatenate((apv_y_train,rand_train_scores),axis=0)
X_test = val_feats #np.concatenate((apv_val,val_feats),axis=0)
y_test= val_scores #np.concatenate((apv_y_val,val_scores),axis=0)#np.concatenate((apv_y_val,val_scores),axis=0)
scaler = preprocessing.MinMaxScaler(feature_range=(-1,1))
# Normalize train and test data
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
best_score = -100
for gamma in np.logspace(-8,1,10):
for C in np.logspace(1,10,10,base=2):
#Kfold splitter for cross validation
kf = KFold(n_splits=5)
cv_score = []
cv_score2 = []
for cv_split in range(5):
cv_val_indices = []
# Validation unique content indices - Note that this is deterministic and covers all possible splits of training data
# Note that the final split ends at index 35. One video is always left out because 36 is not divisible by 5
# The last video is the 35th. Hence the validation set and test set don't mix. Test set is 37th-45th unique contents only.
val_content_indices1= np.arange(cv_split*7,cv_split*7+7)
# Choose the corresponding indices from the content indices list (which had been shuffled earlier)
val_content_indices = content_indices[val_content_indices1]
# Using content indices choose the distorted+reference video indices
for index in val_content_indices:
cv_val_indices.append(np.arange(int(index*7),int((index+1)*7)))
cv_val_indices=np.reshape(cv_val_indices,(49,))
# Now using the previously computed indices, choose the features and scores for validation from the LIVE video features
live_cv_val_feats = live_feats[cv_val_indices]
live_cv_val_scores = live_scores[cv_val_indices]
# Train indices are formed by deleting test indices and val indices from the total set of indices
cv_train_indices = np.delete(all_indices,np.concatenate((cv_val_indices,rand_val_indices)))
# Choose the training set for LIVE
live_cv_train_feats = live_feats[cv_train_indices]
live_cv_train_scores = live_scores[cv_train_indices]
#
# Do a manual grid search for the best parameters
scaler = preprocessing.MinMaxScaler(feature_range=(-1,1))
cv_train_feats = scaler.fit_transform(live_cv_train_feats)
cv_val_feats = scaler.transform(live_cv_val_feats)
clf = svm.SVR(gamma=gamma,C=C)
clf.fit(cv_train_feats,live_cv_train_scores)
cv_score.append(clf.score(cv_val_feats,live_cv_val_scores))
avg_cv_score = np.average(cv_score)
if(avg_cv_score>best_score):
best_score = avg_cv_score
best_C = C
best_gamma = gamma
clf_best = svm.SVR(gamma=best_gamma,C=best_C)
clf_best.fit(X_train,y_train)
preds = clf_best.predict(X_test)
predfname = 'preds_'+str(split_no)+'.mat'
out = {'pred':preds,'y':y_test}
savemat(os.path.join(outfolder,predfname),out)
srocc_test = spearmanr(preds,y_test)
print(srocc_test[0])
return srocc_test[0]
if (dataset=='apv'):
srocc = Parallel(n_jobs=-1)(delayed(apv_train)(split_no) for split_no in range(1000))
print(np.median(srocc),' is the median srocc')
elif(dataset=='apv_d'):
sroccs = []
srocc = Parallel(n_jobs=-1)(delayed(apvd_train)(split_no) for split_no in range(1000))
srocc = np.asarray(srocc)
notnansrocc =srocc[~np.isnan(srocc)]
print(np.median(notnansrocc),' is the median srocc')
print(last_l)
elif(dataset=="onlytrain"):
only_train()