forked from lukasHoel/text2room
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_scene.py
69 lines (52 loc) · 2.23 KB
/
generate_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import json
from PIL import Image
from model.text2room_pipeline import Text2RoomPipeline
from model.utils.opt import get_default_parser
from model.utils.utils import save_poisson_mesh, generate_first_image
import torch
@torch.no_grad()
def main(args):
# load trajectories
trajectories = json.load(open(args.trajectory_file, "r"))
# check if there is a custom prompt in the first trajectory
# would use it to generate start image, if we have to
if "prompt" in trajectories[0]:
args.prompt = trajectories[0]["prompt"]
# get first image from text prompt or saved image folder
if (not args.input_image_path) or (not os.path.isfile(args.input_image_path)):
first_image_pil = generate_first_image(args)
else:
first_image_pil = Image.open(args.input_image_path)
# load pipeline
pipeline = Text2RoomPipeline(args, first_image_pil=first_image_pil)
# generate using all trajectories
offset = 1 # have the start image already
for t in trajectories:
pipeline.set_trajectory(t)
offset = pipeline.generate_images(offset=offset)
# save outputs before completion
pipeline.clean_mesh()
intermediate_mesh_path = pipeline.save_mesh("after_generation.ply")
save_poisson_mesh(intermediate_mesh_path, depth=args.poisson_depth, max_faces=args.max_faces_for_poisson)
# run completion
pipeline.args.update_mask_after_improvement = True
pipeline.complete_mesh(offset=offset)
pipeline.clean_mesh()
# Now no longer need the models
pipeline.remove_models()
# save outputs after completion
final_mesh_path = pipeline.save_mesh()
# run poisson mesh reconstruction
mesh_poisson_path = save_poisson_mesh(final_mesh_path, depth=args.poisson_depth, max_faces=args.max_faces_for_poisson)
# save additional output
pipeline.save_animations()
pipeline.load_mesh(mesh_poisson_path)
pipeline.save_seen_trajectory_renderings(apply_noise=False, add_to_nerf_images=True)
pipeline.save_nerf_transforms()
pipeline.save_seen_trajectory_renderings(apply_noise=True)
print("Finished. Outputs stored in:", args.out_path)
if __name__ == "__main__":
parser = get_default_parser()
args = parser.parse_args()
main(args)