给你两个下标从 0 开始的整数数组 nums1
和 nums2
,两者长度都是 n
,再给你一个正整数 k
。你必须从 nums1
中选一个长度为 k
的 子序列 对应的下标。
对于选择的下标 i0
,i1
,..., ik - 1
,你的 分数 定义如下:
nums1
中下标对应元素求和,乘以nums2
中下标对应元素的 最小值 。- 用公示表示:
(nums1[i0] + nums1[i1] +...+ nums1[ik - 1]) * min(nums2[i0] , nums2[i1], ... ,nums2[ik - 1])
。
请你返回 最大 可能的分数。
一个数组的 子序列 下标是集合 {0, 1, ..., n-1}
中删除若干元素得到的剩余集合,也可以不删除任何元素。
示例 1:
输入:nums1 = [1,3,3,2], nums2 = [2,1,3,4], k = 3 输出:12 解释: 四个可能的子序列分数为: - 选择下标 0 ,1 和 2 ,得到分数 (1+3+3) * min(2,1,3) = 7 。 - 选择下标 0 ,1 和 3 ,得到分数 (1+3+2) * min(2,1,4) = 6 。 - 选择下标 0 ,2 和 3 ,得到分数 (1+3+2) * min(2,3,4) = 12 。 - 选择下标 1 ,2 和 3 ,得到分数 (3+3+2) * min(1,3,4) = 8 。 所以最大分数为 12 。
示例 2:
输入:nums1 = [4,2,3,1,1], nums2 = [7,5,10,9,6], k = 1 输出:30 解释: 选择下标 2 最优:nums1[2] * nums2[2] = 3 * 10 = 30 是最大可能分数。
提示:
n == nums1.length == nums2.length
1 <= n <= 105
0 <= nums1[i], nums2[j] <= 105
1 <= k <= n
方法一:排序 + 优先队列(小根堆)
将 nums2
与 nums1
按照 nums2
降序排序,然后从前往后遍历,维护一个小根堆,堆中存储 nums1
中的元素,堆中元素个数不超过
时间复杂度 nums1
的长度。
class Solution:
def maxScore(self, nums1: List[int], nums2: List[int], k: int) -> int:
nums = sorted(zip(nums2, nums1), reverse=True)
q = []
ans = s = 0
for a, b in nums:
s += b
heappush(q, b)
if len(q) == k:
ans = max(ans, s * a)
s -= heappop(q)
return ans
class Solution {
public long maxScore(int[] nums1, int[] nums2, int k) {
int n = nums1.length;
int[][] nums = new int[n][2];
for (int i = 0; i < n; ++i) {
nums[i] = new int[] {nums1[i], nums2[i]};
}
Arrays.sort(nums, (a, b) -> b[1] - a[1]);
long ans = 0, s = 0;
PriorityQueue<Integer> q = new PriorityQueue<>();
for (int i = 0; i < n; ++i) {
s += nums[i][0];
q.offer(nums[i][0]);
if (q.size() == k) {
ans = Math.max(ans, s * nums[i][1]);
s -= q.poll();
}
}
return ans;
}
}
class Solution {
public:
long long maxScore(vector<int>& nums1, vector<int>& nums2, int k) {
int n = nums1.size();
vector<pair<int, int>> nums(n);
for (int i = 0; i < n; ++i) {
nums[i] = {-nums2[i], nums1[i]};
}
sort(nums.begin(), nums.end());
priority_queue<int, vector<int>, greater<int>> q;
long long ans = 0, s = 0;
for (auto& [a, b] : nums) {
s += b;
q.push(b);
if (q.size() == k) {
ans = max(ans, s * -a);
s -= q.top();
q.pop();
}
}
return ans;
}
};
func maxScore(nums1 []int, nums2 []int, k int) int64 {
type pair struct{ a, b int }
nums := []pair{}
for i, a := range nums1 {
b := nums2[i]
nums = append(nums, pair{a, b})
}
sort.Slice(nums, func(i, j int) bool { return nums[i].b > nums[j].b })
q := hp{}
var ans, s int
for _, e := range nums {
a, b := e.a, e.b
s += a
heap.Push(&q, a)
if q.Len() == k {
ans = max(ans, s*b)
s -= heap.Pop(&q).(int)
}
}
return int64(ans)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() interface{} {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}