Skip to content

Latest commit

 

History

History
171 lines (137 loc) · 3.84 KB

File metadata and controls

171 lines (137 loc) · 3.84 KB

中文文档

Description

Given a 0-indexed integer array nums, determine whether there exist two subarrays of length 2 with equal sum. Note that the two subarrays must begin at different indices.

Return true if these subarrays exist, and false otherwise.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [4,2,4]
Output: true
Explanation: The subarrays with elements [4,2] and [2,4] have the same sum of 6.

Example 2:

Input: nums = [1,2,3,4,5]
Output: false
Explanation: No two subarrays of size 2 have the same sum.

Example 3:

Input: nums = [0,0,0]
Output: true
Explanation: The subarrays [nums[0],nums[1]] and [nums[1],nums[2]] have the same sum of 0. 
Note that even though the subarrays have the same content, the two subarrays are considered different because they are in different positions in the original array.

 

Constraints:

  • 2 <= nums.length <= 1000
  • -109 <= nums[i] <= 109

Solutions

Python3

class Solution:
    def findSubarrays(self, nums: List[int]) -> bool:
        vis = set()
        for a, b in pairwise(nums):
            if (x := a + b) in vis:
                return True
            vis.add(x)
        return False

Java

class Solution {
    public boolean findSubarrays(int[] nums) {
        Set<Integer> vis = new HashSet<>();
        for (int i = 1; i < nums.length; ++i) {
            if (!vis.add(nums[i - 1] + nums[i])) {
                return true;
            }
        }
        return false;
    }
}

C++

class Solution {
public:
    bool findSubarrays(vector<int>& nums) {
        unordered_set<int> vis;
        for (int i = 1; i < nums.size(); ++i) {
            int x = nums[i - 1] + nums[i];
            if (vis.count(x)) {
                return true;
            }
            vis.insert(x);
        }
        return false;
    }
};

Go

func findSubarrays(nums []int) bool {
	vis := map[int]bool{}
	for i, b := range nums[1:] {
		x := nums[i] + b
		if vis[x] {
			return true
		}
		vis[x] = true
	}
	return false
}

TypeScript

function findSubarrays(nums: number[]): boolean {
    const vis: Set<number> = new Set<number>();
    for (let i = 1; i < nums.length; ++i) {
        const x = nums[i - 1] + nums[i];
        if (vis.has(x)) {
            return true;
        }
        vis.add(x);
    }
    return false;
}

Rust

use std::collections::HashSet;
impl Solution {
    pub fn find_subarrays(nums: Vec<i32>) -> bool {
        let n = nums.len();
        let mut set = HashSet::new();
        for i in 1..n {
            if !set.insert(nums[i - 1] + nums[i]) {
                return true;
            }
        }
        false
    }
}

C

bool findSubarrays(int *nums, int numsSize) {
    for (int i = 1; i < numsSize - 1; i++) {
        for (int j = i + 1; j < numsSize; j++) {
            if (nums[i - 1] + nums[i] == nums[j - 1] + nums[j]) {
                return true;
            }
        }
    }
    return false;
}

...