给你两个整数 n
和 maxValue
,用于描述一个 理想数组 。
对于下标从 0 开始、长度为 n
的整数数组 arr
,如果满足以下条件,则认为该数组是一个 理想数组 :
- 每个
arr[i]
都是从1
到maxValue
范围内的一个值,其中0 <= i < n
。 - 每个
arr[i]
都可以被arr[i - 1]
整除,其中0 < i < n
。
返回长度为 n
的 不同 理想数组的数目。由于答案可能很大,返回对 109 + 7
取余的结果。
示例 1:
输入:n = 2, maxValue = 5 输出:10 解释:存在以下理想数组: - 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5] - 以 2 开头的数组(2 个):[2,2]、[2,4] - 以 3 开头的数组(1 个):[3,3] - 以 4 开头的数组(1 个):[4,4] - 以 5 开头的数组(1 个):[5,5] 共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。
示例 2:
输入:n = 5, maxValue = 3 输出:11 解释:存在以下理想数组: - 以 1 开头的数组(9 个): - 不含其他不同值(1 个):[1,1,1,1,1] - 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2] - 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3] - 以 2 开头的数组(1 个):[2,2,2,2,2] - 以 3 开头的数组(1 个):[3,3,3,3,3] 共计 9 + 1 + 1 = 11 个不同理想数组。
提示:
2 <= n <= 104
1 <= maxValue <= 104
我们注意到,$maxValue$ 的最大值不超过
方法一:记忆化搜索 + 组合计数
方法二:动态规划
设
考虑
我们可以预处理组合数
最终的答案为
class Solution:
def idealArrays(self, n: int, maxValue: int) -> int:
@cache
def dfs(i, cnt):
res = c[-1][cnt - 1]
if cnt < n:
k = 2
while k * i <= maxValue:
res = (res + dfs(k * i, cnt + 1)) % mod
k += 1
return res
c = [[0] * 16 for _ in range(n)]
mod = 10**9 + 7
for i in range(n):
for j in range(min(16, i + 1)):
c[i][j] = 1 if j == 0 else (c[i - 1][j] + c[i - 1][j - 1]) % mod
ans = 0
for i in range(1, maxValue + 1):
ans = (ans + dfs(i, 1)) % mod
return ans
class Solution:
def idealArrays(self, n: int, maxValue: int) -> int:
c = [[0] * 16 for _ in range(n)]
mod = 10**9 + 7
for i in range(n):
for j in range(min(16, i + 1)):
c[i][j] = 1 if j == 0 else (c[i - 1][j] + c[i - 1][j - 1]) % mod
dp = [[0] * 16 for _ in range(maxValue + 1)]
for i in range(1, maxValue + 1):
dp[i][1] = 1
for j in range(1, 15):
for i in range(1, maxValue + 1):
k = 2
while k * i <= maxValue:
dp[k * i][j + 1] = (dp[k * i][j + 1] + dp[i][j]) % mod
k += 1
ans = 0
for i in range(1, maxValue + 1):
for j in range(1, 16):
ans = (ans + dp[i][j] * c[-1][j - 1]) % mod
return ans
class Solution {
private int[][] f;
private int[][] c;
private int n;
private int m;
private static final int MOD = (int) 1e9 + 7;
public int idealArrays(int n, int maxValue) {
this.n = n;
this.m = maxValue;
this.f = new int[maxValue + 1][16];
for (int[] row : f) {
Arrays.fill(row, -1);
}
c = new int[n][16];
for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i && j < 16; ++j) {
c[i][j] = j == 0 ? 1 : (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
}
int ans = 0;
for (int i = 1; i <= m; ++i) {
ans = (ans + dfs(i, 1)) % MOD;
}
return ans;
}
private int dfs(int i, int cnt) {
if (f[i][cnt] != -1) {
return f[i][cnt];
}
int res = c[n - 1][cnt - 1];
if (cnt < n) {
for (int k = 2; k * i <= m; ++k) {
res = (res + dfs(k * i, cnt + 1)) % MOD;
}
}
f[i][cnt] = res;
return res;
}
}
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int idealArrays(int n, int maxValue) {
int[][] c = new int[n][16];
for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i && j < 16; ++j) {
c[i][j] = j == 0 ? 1 : (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
}
long[][] dp = new long[maxValue + 1][16];
for (int i = 1; i <= maxValue; ++i) {
dp[i][1] = 1;
}
for (int j = 1; j < 15; ++j) {
for (int i = 1; i <= maxValue; ++i) {
int k = 2;
for (; k * i <= maxValue; ++k) {
dp[k * i][j + 1] = (dp[k * i][j + 1] + dp[i][j]) % MOD;
}
}
}
long ans = 0;
for (int i = 1; i <= maxValue; ++i) {
for (int j = 1; j < 16; ++j) {
ans = (ans + dp[i][j] * c[n - 1][j - 1]) % MOD;
}
}
return (int) ans;
}
}
class Solution {
public:
int m, n;
const int mod = 1e9 + 7;
vector<vector<int>> f;
vector<vector<int>> c;
int idealArrays(int n, int maxValue) {
this->m = maxValue;
this->n = n;
f.assign(maxValue + 1, vector<int>(16, -1));
c.assign(n, vector<int>(16, 0));
for (int i = 0; i < n; ++i)
for (int j = 0; j <= i && j < 16; ++j)
c[i][j] = !j ? 1 : (c[i - 1][j] + c[i - 1][j - 1]) % mod;
int ans = 0;
for (int i = 1; i <= m; ++i) ans = (ans + dfs(i, 1)) % mod;
return ans;
}
int dfs(int i, int cnt) {
if (f[i][cnt] != -1) return f[i][cnt];
int res = c[n - 1][cnt - 1];
if (cnt < n)
for (int k = 2; k * i <= m; ++k)
res = (res + dfs(k * i, cnt + 1)) % mod;
f[i][cnt] = res;
return res;
}
};
using ll = long long;
class Solution {
public:
const int mod = 1e9 + 7;
int idealArrays(int n, int maxValue) {
vector<vector<int>> c(n, vector<int>(16));
for (int i = 0; i < n; ++i)
for (int j = 0; j <= i && j < 16; ++j)
c[i][j] = j == 0 ? 1 : (c[i - 1][j] + c[i - 1][j - 1]) % mod;
vector<vector<ll>> dp(maxValue + 1, vector<ll>(16));
for (int i = 1; i <= maxValue; ++i) dp[i][1] = 1;
for (int j = 1; j < 15; ++j)
{
for (int i = 1; i <= maxValue; ++i)
{
int k = 2;
for (; k * i <= maxValue; ++k) dp[k * i][j + 1] = (dp[k * i][j + 1] + dp[i][j]) % mod;
}
}
ll ans = 0;
for (int i = 1; i <= maxValue; ++i)
for (int j = 1; j < 16; ++j)
ans = (ans + dp[i][j] * c[n - 1][j - 1]) % mod;
return (int) ans;
}
};
func idealArrays(n int, maxValue int) int {
mod := int(1e9) + 7
m := maxValue
c := make([][]int, n)
f := make([][]int, m+1)
for i := range c {
c[i] = make([]int, 16)
}
for i := range f {
f[i] = make([]int, 16)
for j := range f[i] {
f[i][j] = -1
}
}
var dfs func(int, int) int
dfs = func(i, cnt int) int {
if f[i][cnt] != -1 {
return f[i][cnt]
}
res := c[n-1][cnt-1]
if cnt < n {
for k := 2; k*i <= m; k++ {
res = (res + dfs(k*i, cnt+1)) % mod
}
}
f[i][cnt] = res
return res
}
for i := 0; i < n; i++ {
for j := 0; j <= i && j < 16; j++ {
if j == 0 {
c[i][j] = 1
} else {
c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod
}
}
}
ans := 0
for i := 1; i <= m; i++ {
ans = (ans + dfs(i, 1)) % mod
}
return ans
}
func idealArrays(n int, maxValue int) int {
mod := int(1e9) + 7
c := make([][]int, n)
for i := range c {
c[i] = make([]int, 16)
}
for i := 0; i < n; i++ {
for j := 0; j <= i && j < 16; j++ {
if j == 0 {
c[i][j] = 1
} else {
c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod
}
}
}
dp := make([][]int, maxValue+1)
for i := range dp {
dp[i] = make([]int, 16)
dp[i][1] = 1
}
for j := 1; j < 15; j++ {
for i := 1; i <= maxValue; i++ {
k := 2
for ; k*i <= maxValue; k++ {
dp[k*i][j+1] = (dp[k*i][j+1] + dp[i][j]) % mod
}
}
}
ans := 0
for i := 1; i <= maxValue; i++ {
for j := 1; j < 16; j++ {
ans = (ans + dp[i][j]*c[n-1][j-1]) % mod
}
}
return ans
}