你在一个城市里,城市由 n
个路口组成,路口编号为 0
到 n - 1
,某些路口之间有 双向 道路。输入保证你可以从任意路口出发到达其他任意路口,且任意两个路口之间最多有一条路。
给你一个整数 n
和二维整数数组 roads
,其中 roads[i] = [ui, vi, timei]
表示在路口 ui
和 vi
之间有一条需要花费 timei
时间才能通过的道路。你想知道花费 最少时间 从路口 0
出发到达路口 n - 1
的方案数。
请返回花费 最少时间 到达目的地的 路径数目 。由于答案可能很大,将结果对 109 + 7
取余 后返回。
示例 1:
输入:n = 7, roads = [[0,6,7],[0,1,2],[1,2,3],[1,3,3],[6,3,3],[3,5,1],[6,5,1],[2,5,1],[0,4,5],[4,6,2]] 输出:4 解释:从路口 0 出发到路口 6 花费的最少时间是 7 分钟。 四条花费 7 分钟的路径分别为: - 0 ➝ 6 - 0 ➝ 4 ➝ 6 - 0 ➝ 1 ➝ 2 ➝ 5 ➝ 6 - 0 ➝ 1 ➝ 3 ➝ 5 ➝ 6
示例 2:
输入:n = 2, roads = [[1,0,10]] 输出:1 解释:只有一条从路口 0 到路口 1 的路,花费 10 分钟。
提示:
1 <= n <= 200
n - 1 <= roads.length <= n * (n - 1) / 2
roads[i].length == 3
0 <= ui, vi <= n - 1
1 <= timei <= 109
ui != vi
- 任意两个路口之间至多有一条路。
- 从任意路口出发,你能够到达其他任意路口。
方法一:朴素 Dijkstra 算法
在求最短路的过程中顺便记录到达某个点最短路径的方案数。松弛优化时,如果发现有更优的路径,则方案数也赋值最优路径的前驱的方案数。如果发现与最优的路径长度相同,则累加当前前驱的方案数。
由于图有可能非常稠密,所以采用朴素的 Dijkstra 算法。
时间复杂度
注意:最短路的长度可能会超过 32 位整数的范围。
class Solution:
def countPaths(self, n: int, roads: List[List[int]]) -> int:
INF = inf
MOD = 10**9 + 7
g = [[INF] * n for _ in range(n)]
for u, v, t in roads:
g[u][v] = t
g[v][u] = t
g[0][0] = 0
dist = [INF] * n
w = [0] * n
dist[0] = 0
w[0] = 1
vis = [False] * n
for _ in range(n):
t = -1
for i in range(n):
if not vis[i] and (t == -1 or dist[i] < dist[t]):
t = i
vis[t] = True
for i in range(n):
if i == t:
continue
ne = dist[t] + g[t][i]
if dist[i] > ne:
dist[i] = ne
w[i] = w[t]
elif dist[i] == ne:
w[i] += w[t]
return w[-1] % MOD
class Solution {
private static final long INF = Long.MAX_VALUE / 2;
private static final int MOD = (int) 1e9 + 7;
public int countPaths(int n, int[][] roads) {
long[][] g = new long[n][n];
long[] dist = new long[n];
long[] w = new long[n];
boolean[] vis = new boolean[n];
for (int i = 0; i < n; ++i) {
Arrays.fill(g[i], INF);
Arrays.fill(dist, INF);
}
for (int[] r : roads) {
int u = r[0], v = r[1], t = r[2];
g[u][v] = t;
g[v][u] = t;
}
g[0][0] = 0;
dist[0] = 0;
w[0] = 1;
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 0; j < n; ++j) {
if (!vis[j] && (t == -1 || dist[j] < dist[t])) {
t = j;
}
}
vis[t] = true;
for (int j = 0; j < n; ++j) {
if (j == t) {
continue;
}
long ne = dist[t] + g[t][j];
if (dist[j] > ne) {
dist[j] = ne;
w[j] = w[t];
} else if (dist[j] == ne) {
w[j] = (w[j] + w[t]) % MOD;
}
}
}
return (int) w[n - 1];
}
}
typedef long long ll;
class Solution {
public:
const ll INF = LLONG_MAX / 2;
const int MOD = 1e9 + 7;
int countPaths(int n, vector<vector<int>>& roads) {
vector<vector<ll>> g(n, vector<ll>(n, INF));
vector<ll> dist(n, INF);
vector<ll> w(n);
vector<bool> vis(n);
for (auto& r : roads) {
int u = r[0], v = r[1], t = r[2];
g[u][v] = t;
g[v][u] = t;
}
g[0][0] = 0;
dist[0] = 0;
w[0] = 1;
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 0; j < n; ++j) {
if (!vis[j] && (t == -1 || dist[t] > dist[j])) t = j;
}
vis[t] = true;
for (int j = 0; j < n; ++j) {
if (t == j) continue;
ll ne = dist[t] + g[t][j];
if (dist[j] > ne) {
dist[j] = ne;
w[j] = w[t];
} else if (dist[j] == ne)
w[j] = (w[j] + w[t]) % MOD;
}
}
return w[n - 1];
}
};
func countPaths(n int, roads [][]int) int {
const inf = math.MaxInt64 / 2
const mod = int(1e9) + 7
g := make([][]int, n)
dist := make([]int, n)
w := make([]int, n)
vis := make([]bool, n)
for i := range g {
g[i] = make([]int, n)
dist[i] = inf
for j := range g[i] {
g[i][j] = inf
}
}
for _, r := range roads {
u, v, t := r[0], r[1], r[2]
g[u][v], g[v][u] = t, t
}
g[0][0] = 0
dist[0] = 0
w[0] = 1
for i := 0; i < n; i++ {
t := -1
for j := 0; j < n; j++ {
if !vis[j] && (t == -1 || dist[t] > dist[j]) {
t = j
}
}
vis[t] = true
for j := 0; j < n; j++ {
if j == t {
continue
}
ne := dist[t] + g[t][j]
if dist[j] > ne {
dist[j] = ne
w[j] = w[t]
} else if dist[j] == ne {
w[j] = (w[j] + w[t]) % mod
}
}
}
return w[n-1]
}