给你一个整数数组 arr
,请你删除最小 5%
的数字和最大 5%
的数字后,剩余数字的平均值。
与 标准答案 误差在 10-5
的结果都被视为正确结果。
示例 1:
输入:arr = [1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3] 输出:2.00000 解释:删除数组中最大和最小的元素后,所有元素都等于 2,所以平均值为 2 。
示例 2:
输入:arr = [6,2,7,5,1,2,0,3,10,2,5,0,5,5,0,8,7,6,8,0] 输出:4.00000
示例 3:
输入:arr = [6,0,7,0,7,5,7,8,3,4,0,7,8,1,6,8,1,1,2,4,8,1,9,5,4,3,8,5,10,8,6,6,1,0,6,10,8,2,3,4] 输出:4.77778
示例 4:
输入:arr = [9,7,8,7,7,8,4,4,6,8,8,7,6,8,8,9,2,6,0,0,1,10,8,6,3,3,5,1,10,9,0,7,10,0,10,4,1,10,6,9,3,6,0,0,2,7,0,6,7,2,9,7,7,3,0,1,6,1,10,3] 输出:5.27778
示例 5:
输入:arr = [4,8,4,10,0,7,1,3,7,8,8,3,4,1,6,2,1,1,8,0,9,8,0,3,9,10,3,10,1,10,7,3,2,1,4,9,10,7,6,4,0,8,5,1,2,1,6,2,5,0,7,10,9,10,3,7,10,5,8,5,7,6,7,6,10,9,5,10,5,5,7,2,10,7,7,8,2,0,1,1] 输出:5.29167
提示:
20 <= arr.length <= 1000
arr.length
是20
的 倍数0 <= arr[i] <= 105
方法一:模拟
直接模拟。
先对数组 arr
排序,然后截取中间的 90% 个元素,求平均值。
时间复杂度 arr
的长度。
class Solution:
def trimMean(self, arr: List[int]) -> float:
n = len(arr)
start, end = int(n * 0.05), int(n * 0.95)
arr.sort()
t = arr[start:end]
return round(sum(t) / len(t), 5)
class Solution {
public double trimMean(int[] arr) {
Arrays.sort(arr);
int n = arr.length;
double s = 0;
for (int start = (int) (n * 0.05), i = start; i < n - start; ++i) {
s += arr[i];
}
return s / (n * 0.9);
}
}
function trimMean(arr: number[]): number {
arr.sort((a, b) => a - b);
let n = arr.length,
rmLen = n * 0.05;
let sum = 0;
for (let i = rmLen; i < n - rmLen; i++) {
sum += arr[i];
}
return sum / (n * 0.9);
}
class Solution {
public:
double trimMean(vector<int>& arr) {
sort(arr.begin(), arr.end());
int n = arr.size();
double s = 0;
for (int start = (int)(n * 0.05), i = start; i < n - start; ++i)
s += arr[i];
return s / (n * 0.9);
}
};
func trimMean(arr []int) float64 {
sort.Ints(arr)
n := len(arr)
sum := 0.0
for i := n / 20; i < n-n/20; i++ {
sum += float64(arr[i])
}
return sum / (float64(n) * 0.9)
}
impl Solution {
pub fn trim_mean(mut arr: Vec<i32>) -> f64 {
arr.sort();
let n = arr.len();
let count = (n as f64 * 0.05).floor() as usize;
let mut sum = 0;
for i in count..n - count {
sum += arr[i];
}
sum as f64 / (n as f64 * 0.9)
}
}