Skip to content

Latest commit

 

History

History
317 lines (269 loc) · 11 KB

File metadata and controls

317 lines (269 loc) · 11 KB

English Version

题目描述

在一个小城市里,有 m 个房子排成一排,你需要给每个房子涂上 n 种颜色之一(颜色编号为 1n )。有的房子去年夏天已经涂过颜色了,所以这些房子不可以被重新涂色。

我们将连续相同颜色尽可能多的房子称为一个街区。(比方说 houses = [1,2,2,3,3,2,1,1] ,它包含 5 个街区  [{1}, {2,2}, {3,3}, {2}, {1,1}] 。)

给你一个数组 houses ,一个 m * n 的矩阵 cost 和一个整数 target ,其中:

  • houses[i]:是第 i 个房子的颜色,0 表示这个房子还没有被涂色。
  • cost[i][j]:是将第 i 个房子涂成颜色 j+1 的花费。

请你返回房子涂色方案的最小总花费,使得每个房子都被涂色后,恰好组成 target 个街区。如果没有可用的涂色方案,请返回 -1 。

 

示例 1:

输入:houses = [0,0,0,0,0], cost = [[1,10],[10,1],[10,1],[1,10],[5,1]], m = 5, n = 2, target = 3
输出:9
解释:房子涂色方案为 [1,2,2,1,1]
此方案包含 target = 3 个街区,分别是 [{1}, {2,2}, {1,1}]。
涂色的总花费为 (1 + 1 + 1 + 1 + 5) = 9。

示例 2:

输入:houses = [0,2,1,2,0], cost = [[1,10],[10,1],[10,1],[1,10],[5,1]], m = 5, n = 2, target = 3
输出:11
解释:有的房子已经被涂色了,在此基础上涂色方案为 [2,2,1,2,2]
此方案包含 target = 3 个街区,分别是 [{2,2}, {1}, {2,2}]。
给第一个和最后一个房子涂色的花费为 (10 + 1) = 11。

示例 3:

输入:houses = [0,0,0,0,0], cost = [[1,10],[10,1],[1,10],[10,1],[1,10]], m = 5, n = 2, target = 5
输出:5

示例 4:

输入:houses = [3,1,2,3], cost = [[1,1,1],[1,1,1],[1,1,1],[1,1,1]], m = 4, n = 3, target = 3
输出:-1
解释:房子已经被涂色并组成了 4 个街区,分别是 [{3},{1},{2},{3}] ,无法形成 target = 3 个街区。

 

提示:

  • m == houses.length == cost.length
  • n == cost[i].length
  • 1 <= m <= 100
  • 1 <= n <= 20
  • 1 <= target <= m
  • 0 <= houses[i] <= n
  • 1 <= cost[i][j] <= 10^4

解法

方法一:动态规划

我们定义 $f[i][j][k]$ 表示将下标 $[0,..i]$ 的房子涂上颜色,最后一个房子的颜色为 $j$,且恰好形成 $k$ 个街区的最小花费。那么答案就是 $f[m-1][j][target]$,其中 $j$ 的取值范围为 $[1,..n]$。初始时,我们判断下标为 $0$ 的房子是否已经涂色,如果未涂色,那么 $f[0][j][1] = cost[0][j - 1]$,其中 $j \in [1,..n]$。如果已经涂色,那么 $f[0][houses[0]][1] = 0$。其他的 $f[i][j][k]$ 的值都初始化为 $\infty$

接下来,我们从下标 $i=1$ 开始遍历,对于每个 $i$,我们判断下标为 $i$ 的房子是否已经涂色:

如果未涂色,那么我们可以将下标为 $i$ 的房子涂成颜色 $j$,我们枚举街区的数量 $k$,其中 $k \in [1,..min(target, i + 1)]$,并且枚举下标为 $i$ 的房子的前一个房子的颜色 $j_0$,其中 $j_0 \in [1,..n]$,那么我们可以得到状态转移方程:

$$ f[i][j][k] = \min_{j_0 \in [1,..n]} { f[i - 1][j_0][k - (j \neq j_0)] + cost[i][j - 1] } $$

如果已经涂色,那么我们可以将下标为 $i$ 的房子涂成颜色 $j$,我们枚举街区的数量 $k$,其中 $k \in [1,..min(target, i + 1)]$,并且枚举下标为 $i$ 的房子的前一个房子的颜色 $j_0$,其中 $j_0 \in [1,..n]$,那么我们可以得到状态转移方程:

$$ f[i][j][k] = \min_{j_0 \in [1,..n]} { f[i - 1][j_0][k - (j \neq j_0)] } $$

最后,我们返回 $f[m - 1][j][target]$,其中 $j \in [1,..n]$,如果所有的 $f[m - 1][j][target]$ 的值都为 $\infty$,那么返回 $-1$

时间复杂度 $O(m \times n^2 \times target)$,空间复杂度 $O(m \times n \times target)$。其中 $m$, $n$, $target$ 分别为房子的数量,颜色的数量,街区的数量。

Python3

class Solution:
    def minCost(self, houses: List[int], cost: List[List[int]], m: int, n: int, target: int) -> int:
        f = [[[inf] * (target + 1) for _ in range(n + 1)] for _ in range(m)]
        if houses[0] == 0:
            for j, c in enumerate(cost[0], 1):
                f[0][j][1] = c
        else:
            f[0][houses[0]][1] = 0
        for i in range(1, m):
            if houses[i] == 0:
                for j in range(1, n + 1):
                    for k in range(1, min(target + 1, i + 2)):
                        for j0 in range(1, n + 1):
                            if j == j0:
                                f[i][j][k] = min(
                                    f[i][j][k], f[i - 1][j][k] + cost[i][j - 1])
                            else:
                                f[i][j][k] = min(
                                    f[i][j][k], f[i - 1][j0][k - 1] + cost[i][j - 1])
            else:
                j = houses[i]
                for k in range(1, min(target + 1, i + 2)):
                    for j0 in range(1, n + 1):
                        if j == j0:
                            f[i][j][k] = min(f[i][j][k], f[i - 1][j][k])
                        else:
                            f[i][j][k] = min(f[i][j][k], f[i - 1][j0][k - 1])

        ans = min(f[-1][j][target] for j in range(1, n + 1))
        return -1 if ans >= inf else ans

Java

class Solution {
    public int minCost(int[] houses, int[][] cost, int m, int n, int target) {
        int[][][] f = new int[m][n + 1][target + 1];
        final int inf = 1 << 30;
        for (int[][] g : f) {
            for (int[] e : g) {
                Arrays.fill(e, inf);
            }
        }
        if (houses[0] == 0) {
            for (int j = 1; j <= n; ++j) {
                f[0][j][1] = cost[0][j - 1];
            }
        } else {
            f[0][houses[0]][1] = 0;
        }
        for (int i = 1; i < m; ++i) {
            if (houses[i] == 0) {
                for (int j = 1; j <= n; ++j) {
                    for (int k = 1; k <= Math.min(target, i + 1); ++k) {
                        for (int j0 = 1; j0 <= n; ++j0) {
                            if (j == j0) {
                                f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j][k] + cost[i][j - 1]);
                            } else {
                                f[i][j][k]
                                    = Math.min(f[i][j][k], f[i - 1][j0][k - 1] + cost[i][j - 1]);
                            }
                        }
                    }
                }
            } else {
                int j = houses[i];
                for (int k = 1; k <= Math.min(target, i + 1); ++k) {
                    for (int j0 = 1; j0 <= n; ++j0) {
                        if (j == j0) {
                            f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j][k]);
                        } else {
                            f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j0][k - 1]);
                        }
                    }
                }
            }
        }
        int ans = inf;
        for (int j = 1; j <= n; ++j) {
            ans = Math.min(ans, f[m - 1][j][target]);
        }
        return ans >= inf ? -1 : ans;
    }
}

C++

class Solution {
public:
    int minCost(vector<int>& houses, vector<vector<int>>& cost, int m, int n, int target) {
        int f[m][n + 1][target + 1];
        memset(f, 0x3f, sizeof(f));
        if (houses[0] == 0) {
            for (int j = 1; j <= n; ++j) {
                f[0][j][1] = cost[0][j - 1];
            }
        } else {
            f[0][houses[0]][1] = 0;
        }
        for (int i = 1; i < m; ++i) {
            if (houses[i] == 0) {
                for (int j = 1; j <= n; ++j) {
                    for (int k = 1; k <= min(target, i + 1); ++k) {
                        for (int j0 = 1; j0 <= n; ++j0) {
                            if (j == j0) {
                                f[i][j][k] = min(f[i][j][k], f[i - 1][j][k] + cost[i][j - 1]);
                            } else {
                                f[i][j][k] = min(f[i][j][k], f[i - 1][j0][k - 1] + cost[i][j - 1]);
                            }
                        }
                    }
                }
            } else {
                int j = houses[i];
                for (int k = 1; k <= min(target, i + 1); ++k) {
                    for (int j0 = 1; j0 <= n; ++j0) {
                        if (j == j0) {
                            f[i][j][k] = min(f[i][j][k], f[i - 1][j][k]);
                        } else {
                            f[i][j][k] = min(f[i][j][k], f[i - 1][j0][k - 1]);
                        }
                    }
                }
            }
        }
        int ans = 0x3f3f3f3f;
        for (int j = 1; j <= n; ++j) {
            ans = min(ans, f[m - 1][j][target]);
        }
        return ans == 0x3f3f3f3f ? -1 : ans;
    }
};

Go

func minCost(houses []int, cost [][]int, m int, n int, target int) int {
	f := make([][][]int, m)
	const inf = 1 << 30
	for i := range f {
		f[i] = make([][]int, n+1)
		for j := range f[i] {
			f[i][j] = make([]int, target+1)
			for k := range f[i][j] {
				f[i][j][k] = inf
			}
		}
	}
	if houses[0] == 0 {
		for j := 1; j <= n; j++ {
			f[0][j][1] = cost[0][j-1]
		}
	} else {
		f[0][houses[0]][1] = 0
	}
	for i := 1; i < m; i++ {
		if houses[i] == 0 {
			for j := 1; j <= n; j++ {
				for k := 1; k <= target && k <= i+1; k++ {
					for j0 := 1; j0 <= n; j0++ {
						if j == j0 {
							f[i][j][k] = min(f[i][j][k], f[i-1][j][k]+cost[i][j-1])
						} else {
							f[i][j][k] = min(f[i][j][k], f[i-1][j0][k-1]+cost[i][j-1])
						}
					}
				}
			}
		} else {
			j := houses[i]
			for k := 1; k <= target && k <= i+1; k++ {
				for j0 := 1; j0 <= n; j0++ {
					if j == j0 {
						f[i][j][k] = min(f[i][j][k], f[i-1][j][k])
					} else {
						f[i][j][k] = min(f[i][j][k], f[i-1][j0][k-1])
					}
				}
			}
		}
	}
	ans := inf
	for j := 1; j <= n; j++ {
		ans = min(ans, f[m-1][j][target])
	}
	if ans == inf {
		return -1
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...