Given n
orders, each order consist in pickup and delivery services.
Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 1 Output: 1 Explanation: Unique order (P1, D1), Delivery 1 always is after of Pickup 1.
Example 2:
Input: n = 2 Output: 6 Explanation: All possible orders: (P1,P2,D1,D2), (P1,P2,D2,D1), (P1,D1,P2,D2), (P2,P1,D1,D2), (P2,P1,D2,D1) and (P2,D2,P1,D1). This is an invalid order (P1,D2,P2,D1) because Pickup 2 is after of Delivery 2.
Example 3:
Input: n = 3 Output: 90
Constraints:
1 <= n <= 500
class Solution:
def countOrders(self, n: int) -> int:
mod = 10**9 + 7
f = 1
for i in range(2, n + 1):
f = (f * i * (2 * i - 1)) % mod
return f
class Solution {
public int countOrders(int n) {
final int mod = (int) 1e9 + 7;
long f = 1;
for (int i = 2; i <= n; ++i) {
f = f * i * (2 * i - 1) % mod;
}
return (int) f;
}
}
class Solution {
public:
int countOrders(int n) {
const int mod = 1e9 + 7;
long long f = 1;
for (int i = 2; i <= n; ++i) {
f = f * i * (2 * i - 1) % mod;
}
return f;
}
};
func countOrders(n int) int {
const mod = 1e9 + 7
f := 1
for i := 2; i <= n; i++ {
f = f * i * (2*i - 1) % mod
}
return f
}