给你一个函数 f(x, y)
和一个目标结果 z
,函数公式未知,请你计算方程 f(x,y) == z
所有可能的正整数 数对 x
和 y
。满足条件的结果数对可以按任意顺序返回。
尽管函数的具体式子未知,但它是单调递增函数,也就是说:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
函数接口定义如下:
interface CustomFunction { public: // Returns some positive integer f(x, y) for two positive integers x and y based on a formula. int f(int x, int y); };
你的解决方案将按如下规则进行评判:
- 判题程序有一个由
CustomFunction
的9
种实现组成的列表,以及一种为特定的z
生成所有有效数对的答案的方法。 - 判题程序接受两个输入:
function_id
(决定使用哪种实现测试你的代码)以及目标结果z
。 - 判题程序将会调用你实现的
findSolution
并将你的结果与答案进行比较。 - 如果你的结果与答案相符,那么解决方案将被视作正确答案,即
Accepted
。
示例 1:
输入:function_id = 1, z = 5 输出:[[1,4],[2,3],[3,2],[4,1]] 解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y 以下 x 和 y 满足 f(x, y) 等于 5: x=1, y=4 -> f(1, 4) = 1 + 4 = 5 x=2, y=3 -> f(2, 3) = 2 + 3 = 5 x=3, y=2 -> f(3, 2) = 3 + 2 = 5 x=4, y=1 -> f(4, 1) = 4 + 1 = 5
示例 2:
输入:function_id = 2, z = 5 输出:[[1,5],[5,1]] 解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y 以下 x 和 y 满足 f(x, y) 等于 5: x=1, y=5 -> f(1, 5) = 1 * 5 = 5 x=5, y=1 -> f(5, 1) = 5 * 1 = 5
提示:
1 <= function_id <= 9
1 <= z <= 100
- 题目保证
f(x, y) == z
的解处于1 <= x, y <= 1000
的范围内。 - 在
1 <= x, y <= 1000
的前提下,题目保证f(x, y)
是一个 32 位有符号整数。
方法一:枚举 + 二分查找
根据题目我们可以知道,函数
时间复杂度
方法二:双指针
我们可以定义两个指针
- 如果
$f(x, y) = z$ ,我们将$(x, y)$ 加入答案中,然后$x \leftarrow x + 1$ ,$y \leftarrow y - 1$ ; - 如果
$f(x, y) \lt z$ ,此时对任意的$y' \lt y$ ,都有$f(x, y') \lt f(x, y) \lt z$ ,因此我们不能将$y$ 减小,只能将$x$ 增大,所以$x \leftarrow x + 1$ ; - 如果
$f(x, y) \gt z$ ,此时对任意的$x' \gt x$ ,都有$f(x', y) \gt f(x, y) \gt z$ ,因此我们不能将$x$ 增大,只能将$y$ 减小,所以$y \leftarrow y - 1$ 。
循环结束后,返回答案。
时间复杂度
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: "CustomFunction", z: int) -> List[List[int]]:
ans = []
for x in range(1, z + 1):
y = 1 + bisect_left(range(1, z + 1), z, key=lambda y: customfunction.f(x, y))
if customfunction.f(x, y) == z:
ans.append([x, y])
return ans
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: "CustomFunction", z: int) -> List[List[int]]:
ans = []
x, y = 1, 1000
while x <= 1000 and y:
t = customfunction.f(x, y)
if t < z:
x += 1
elif t > z:
y -= 1
else:
ans.append([x, y])
x, y = x + 1, y - 1
return ans
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* public int f(int x, int y);
* };
*/
class Solution {
public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {
List<List<Integer>> ans = new ArrayList<>();
for (int x = 1; x <= 1000; ++x) {
int l = 1, r = 1000;
while (l < r) {
int mid = (l + r) >> 1;
if (customfunction.f(x, mid) >= z) {
r = mid;
} else {
l = mid + 1;
}
}
if (customfunction.f(x, l) == z) {
ans.add(Arrays.asList(x, l));
}
}
return ans;
}
}
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* public int f(int x, int y);
* };
*/
class Solution {
public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {
List<List<Integer>> ans = new ArrayList<>();
int x = 1, y = 1000;
while (x <= 1000 && y > 0) {
int t = customfunction.f(x, y);
if (t < z) {
x++;
} else if (t > z) {
y--;
} else {
ans.add(Arrays.asList(x++, y--));
}
}
return ans;
}
}
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* public:
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* int f(int x, int y);
* };
*/
class Solution {
public:
vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {
vector<vector<int>> ans;
for (int x = 1; x <= 1000; ++x) {
int l = 1, r = 1000;
while (l < r) {
int mid = (l + r) >> 1;
if (customfunction.f(x, mid) >= z) {
r = mid;
} else {
l = mid + 1;
}
}
if (customfunction.f(x, l) == z) {
ans.push_back({x, l});
}
}
return ans;
}
};
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* public:
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* int f(int x, int y);
* };
*/
class Solution {
public:
vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {
vector<vector<int>> ans;
int x = 1, y = 1000;
while (x <= 1000 && y) {
int t = customfunction.f(x, y);
if (t < z) {
x++;
} else if (t > z) {
y--;
} else {
ans.push_back({x++, y--});
}
}
return ans;
}
};
/**
* This is the declaration of customFunction API.
* @param x int
* @param x int
* @return Returns f(x, y) for any given positive integers x and y.
* Note that f(x, y) is increasing with respect to both x and y.
* i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
*/
func findSolution(customFunction func(int, int) int, z int) (ans [][]int) {
for x := 1; x <= 1000; x++ {
y := 1 + sort.Search(999, func(y int) bool { return customFunction(x, y+1) >= z })
if customFunction(x, y) == z {
ans = append(ans, []int{x, y})
}
}
return
}
/**
* This is the declaration of customFunction API.
* @param x int
* @param x int
* @return Returns f(x, y) for any given positive integers x and y.
* Note that f(x, y) is increasing with respect to both x and y.
* i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
*/
func findSolution(customFunction func(int, int) int, z int) (ans [][]int) {
x, y := 1, 1000
for x <= 1000 && y > 0 {
t := customFunction(x, y)
if t < z {
x++
} else if t > z {
y--
} else {
ans = append(ans, []int{x, y})
x, y = x+1, y-1
}
}
return
}
/**
* // This is the CustomFunction's API interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* f(x: number, y: number): number {}
* }
*/
function findSolution(customfunction: CustomFunction, z: number): number[][] {
const ans: number[][] = [];
for (let x = 1; x <= 1000; ++x) {
let l = 1;
let r = 1000;
while (l < r) {
const mid = (l + r) >> 1;
if (customfunction.f(x, mid) >= z) {
r = mid;
} else {
l = mid + 1;
}
}
if (customfunction.f(x, l) == z) {
ans.push([x, l]);
}
}
return ans;
}
/**
* // This is the CustomFunction's API interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* f(x: number, y: number): number {}
* }
*/
function findSolution(customfunction: CustomFunction, z: number): number[][] {
let x = 1;
let y = 1000;
const ans: number[][] = [];
while (x <= 1000 && y) {
const t = customfunction.f(x, y);
if (t < z) {
++x;
} else if (t > z) {
--y;
} else {
ans.push([x--, y--]);
}
}
return ans;
}