给你一个二叉树的根节点 root
。设根节点位于二叉树的第 1
层,而根节点的子节点位于第 2
层,依此类推。
请返回层内元素之和 最大 的那几层(可能只有一层)的层号,并返回其中 最小 的那个。
示例 1:
输入:root = [1,7,0,7,-8,null,null] 输出:2 解释: 第 1 层各元素之和为 1, 第 2 层各元素之和为 7 + 0 = 7, 第 3 层各元素之和为 7 + -8 = -1, 所以我们返回第 2 层的层号,它的层内元素之和最大。
示例 2:
输入:root = [989,null,10250,98693,-89388,null,null,null,-32127] 输出:2
提示:
- 树中的节点数在
[1, 104]
范围内 -105 <= Node.val <= 105
方法一:BFS
BFS 层次遍历,求每一层的节点和,找出节点和最大的层,若有多个层的节点和最大,则返回最小的层。
时间复杂度
方法二:DFS
我们也可以使用 DFS 求解。我们用一个数组
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxLevelSum(self, root: Optional[TreeNode]) -> int:
q = deque([root])
mx = -inf
i = 0
while q:
i += 1
s = 0
for _ in range(len(q)):
node = q.popleft()
s += node.val
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
if mx < s:
mx = s
ans = i
return ans
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxLevelSum(self, root: Optional[TreeNode]) -> int:
def dfs(node, i):
if node is None:
return
if i == len(s):
s.append(node.val)
else:
s[i] += node.val
dfs(node.left, i + 1)
dfs(node.right, i + 1)
s = []
dfs(root, 0)
return s.index(max(s)) + 1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxLevelSum(TreeNode root) {
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
int mx = Integer.MIN_VALUE;
int i = 0;
int ans = 0;
while (!q.isEmpty()) {
++i;
int s = 0;
for (int n = q.size(); n > 0; --n) {
TreeNode node = q.pollFirst();
s += node.val;
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
if (mx < s) {
mx = s;
ans = i;
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<Integer> s = new ArrayList<>();
public int maxLevelSum(TreeNode root) {
dfs(root, 0);
int mx = Integer.MIN_VALUE;
int ans = 0;
for (int i = 0; i < s.size(); ++i) {
if (mx < s.get(i)) {
mx = s.get(i);
ans = i + 1;
}
}
return ans;
}
private void dfs(TreeNode root, int i) {
if (root == null) {
return;
}
if (i == s.size()) {
s.add(root.val);
} else {
s.set(i, s.get(i) + root.val);
}
dfs(root.left, i + 1);
dfs(root.right, i + 1);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxLevelSum(TreeNode* root) {
queue<TreeNode*> q {{root}};
int mx = INT_MIN;
int ans = 0;
int i = 0;
while (!q.empty()) {
++i;
int s = 0;
for (int n = q.size(); n; --n) {
root = q.front();
q.pop();
s += root->val;
if (root->left) q.push(root->left);
if (root->right) q.push(root->right);
}
if (mx < s) mx = s, ans = i;
}
return ans;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxLevelSum(TreeNode* root) {
vector<int> s;
dfs(root, 0, s);
int mx = INT_MIN;
int ans = 0;
for (int i = 0; i < s.size(); ++i) if (mx < s[i]) mx = s[i], ans = i + 1;
return ans;
}
void dfs(TreeNode* root, int i, vector<int>& s) {
if (!root) return;
if (s.size() == i) s.push_back(root->val);
else s[i] += root->val;
dfs(root->left, i + 1, s);
dfs(root->right, i + 1, s);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxLevelSum(root *TreeNode) int {
q := []*TreeNode{root}
mx := -0x3f3f3f3f
i := 0
ans := 0
for len(q) > 0 {
i++
s := 0
for n := len(q); n > 0; n-- {
root = q[0]
q = q[1:]
s += root.Val
if root.Left != nil {
q = append(q, root.Left)
}
if root.Right != nil {
q = append(q, root.Right)
}
}
if mx < s {
mx = s
ans = i
}
}
return ans
}
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxLevelSum(root *TreeNode) int {
s := []int{}
var dfs func(*TreeNode, int)
dfs = func(root *TreeNode, i int) {
if root == nil {
return
}
if len(s) == i {
s = append(s, root.Val)
} else {
s[i] += root.Val
}
dfs(root.Left, i+1)
dfs(root.Right, i+1)
}
dfs(root, 0)
ans, mx := 0, -0x3f3f3f3f
for i, v := range s {
if mx < v {
mx = v
ans = i + 1
}
}
return ans
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxLevelSum(root: TreeNode | null): number {
const queue = [root];
let res = 1;
let max = -Infinity;
let h = 1;
while (queue.length !== 0) {
const n = queue.length;
let sum = 0;
for (let i = 0; i < n; i++) {
const { val, left, right } = queue.shift();
sum += val;
left && queue.push(left);
right && queue.push(right);
}
if (sum > max) {
max = sum;
res = h;
}
h++;
}
return res;
}