Given an integer array nums
which is sorted in ascending order and all of its elements are unique and given also an integer k
, return the kth
missing number starting from the leftmost number of the array.
Example 1:
Input: nums = [4,7,9,10], k = 1 Output: 5 Explanation: The first missing number is 5.
Example 2:
Input: nums = [4,7,9,10], k = 3 Output: 8 Explanation: The missing numbers are [5,6,8,...], hence the third missing number is 8.
Example 3:
Input: nums = [1,2,4], k = 3 Output: 6 Explanation: The missing numbers are [3,5,6,7,...], hence the third missing number is 6.
Constraints:
1 <= nums.length <= 5 * 104
1 <= nums[i] <= 107
nums
is sorted in ascending order, and all the elements are unique.1 <= k <= 108
Follow up: Can you find a logarithmic time complexity (i.e.,
O(log(n))
) solution?
class Solution:
def missingElement(self, nums: List[int], k: int) -> int:
def missing(i: int) -> int:
return nums[i] - nums[0] - i
n = len(nums)
if k > missing(n - 1):
return nums[n - 1] + k - missing(n - 1)
l, r = 0, n - 1
while l < r:
mid = (l + r) >> 1
if missing(mid) >= k:
r = mid
else:
l = mid + 1
return nums[l - 1] + k - missing(l - 1)
class Solution {
public int missingElement(int[] nums, int k) {
int n = nums.length;
if (k > missing(nums, n - 1)) {
return nums[n - 1] + k - missing(nums, n - 1);
}
int l = 0, r = n - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (missing(nums, mid) >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l - 1] + k - missing(nums, l - 1);
}
private int missing(int[] nums, int i) {
return nums[i] - nums[0] - i;
}
}
class Solution {
public:
int missingElement(vector<int>& nums, int k) {
auto missing = [&](int i) {
return nums[i] - nums[0] - i;
};
int n = nums.size();
if (k > missing(n - 1)) {
return nums[n - 1] + k - missing(n - 1);
}
int l = 0, r = n - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (missing(mid) >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l - 1] + k - missing(l - 1);
}
};
func missingElement(nums []int, k int) int {
missing := func(i int) int {
return nums[i] - nums[0] - i
}
n := len(nums)
if k > missing(n-1) {
return nums[n-1] + k - missing(n-1)
}
l, r := 0, n-1
for l < r {
mid := (l + r) >> 1
if missing(mid) >= k {
r = mid
} else {
l = mid + 1
}
}
return nums[l-1] + k - missing(l-1)
}