Given an n x n
array of integers matrix
, return the minimum sum of any falling path through matrix
.
A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col)
will be (row + 1, col - 1)
, (row + 1, col)
, or (row + 1, col + 1)
.
Example 1:
Input: matrix = [[2,1,3],[6,5,4],[7,8,9]] Output: 13 Explanation: There are two falling paths with a minimum sum as shown.
Example 2:
Input: matrix = [[-19,57],[-40,-5]] Output: -59 Explanation: The falling path with a minimum sum is shown.
Constraints:
n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100
Dynamic programming.
class Solution:
def minFallingPathSum(self, matrix: List[List[int]]) -> int:
n = len(matrix)
for i in range(1, n):
for j in range(n):
mi = matrix[i - 1][j]
if j > 0:
mi = min(mi, matrix[i - 1][j - 1])
if j < n - 1:
mi = min(mi, matrix[i - 1][j + 1])
matrix[i][j] += mi
return min(matrix[n - 1])
class Solution {
public int minFallingPathSum(int[][] matrix) {
int n = matrix.length;
for (int i = 1; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int mi = matrix[i - 1][j];
if (j > 0) {
mi = Math.min(mi, matrix[i - 1][j - 1]);
}
if (j < n - 1) {
mi = Math.min(mi, matrix[i - 1][j + 1]);
}
matrix[i][j] += mi;
}
}
int res = Integer.MAX_VALUE;
for (int j = 0; j < n; ++j) {
res = Math.min(res, matrix[n - 1][j]);
}
return res;
}
}
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 1; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int mi = matrix[i - 1][j];
if (j > 0) mi = min(mi, matrix[i - 1][j - 1]);
if (j < n - 1) mi = min(mi, matrix[i - 1][j + 1]);
matrix[i][j] += mi;
}
}
int res = INT_MAX;
for (int j = 0; j < n; ++j) {
res = min(res, matrix[n - 1][j]);
}
return res;
}
};
func minFallingPathSum(matrix [][]int) int {
n := len(matrix)
for i := 1; i < n; i++ {
for j := 0; j < n; j++ {
mi := matrix[i - 1][j]
if j > 0 && mi > matrix[i - 1][j - 1] {
mi = matrix[i - 1][j - 1]
}
if j < n - 1 && mi > matrix[i - 1][j + 1] {
mi = matrix[i - 1][j + 1]
}
matrix[i][j] += mi
}
}
res := 10000
for j := 0; j < n; j++ {
if res > matrix[n - 1][j] {
res = matrix[n - 1][j]
}
}
return res
}