Skip to content

Latest commit

 

History

History
170 lines (130 loc) · 4.68 KB

File metadata and controls

170 lines (130 loc) · 4.68 KB

English Version

题目描述

你的音乐播放器里有 N 首不同的歌,在旅途中,你的旅伴想要听 L 首歌(不一定不同,即,允许歌曲重复)。请你为她按如下规则创建一个播放列表:

  • 每首歌至少播放一次。
  • 一首歌只有在其他 K 首歌播放完之后才能再次播放。

返回可以满足要求的播放列表的数量。由于答案可能非常大,请返回它模 10^9 + 7 的结果。

 

示例 1:

输入:N = 3, L = 3, K = 1
输出:6
解释:有 6 种可能的播放列表。[1, 2, 3],[1, 3, 2],[2, 1, 3],[2, 3, 1],[3, 1, 2],[3, 2, 1].

示例 2:

输入:N = 2, L = 3, K = 0
输出:6
解释:有 6 种可能的播放列表。[1, 1, 2],[1, 2, 1],[2, 1, 1],[2, 2, 1],[2, 1, 2],[1, 2, 2]

示例 3:

输入:N = 2, L = 3, K = 1
输出:2
解释:有 2 种可能的播放列表。[1, 2, 1],[2, 1, 2]

 

提示:

  1. 0 <= K < N <= L <= 100

解法

方法一:动态规划

我们定义 $f[i][j]$ 表示听 $i$ 首歌,且这 $i$ 首歌中有 $j$ 首不同歌曲的播放列表的数量。初始时 $f[0][0]=1$。答案为 $f[goal][n]$

对于 $f[i][j]$,我们可以选择没听过的歌,那么上一个状态为 $f[i - 1][j - 1]$,这样的选择有 $n - (j - 1) = n - j + 1$ 种,因此 $f[i][j] += f[i - 1][j - 1] \times (n - j + 1)$。我们也可以选择听过的歌,那么上一个状态为 $f[i - 1][j]$,这样的选择有 $j - k$ 种,因此 $f[i][j] += f[i - 1][j] \times (j - k)$,其中 $j \geq k$

综上,我们可以得到状态转移方程:

$$ f[i][j] = \begin{cases} 1 & i = 0, j = 0 \\ f[i - 1][j - 1] \times (n - j + 1) + f[i - 1][j] \times (j - k) & i \geq 1, j \geq 1 \end{cases} $$

最终的答案为 $f[goal][n]$

时间复杂度 $O(goal \times n)$,空间复杂度 $O(goal \times n)$。其中 $goal$$n$ 为题目中给定的参数。

Python3

class Solution:
    def numMusicPlaylists(self, n: int, goal: int, k: int) -> int:
        mod = 10**9 + 7
        f = [[0] * (n + 1) for _ in range(goal + 1)]
        f[0][0] = 1
        for i in range(1, goal + 1):
            for j in range(1, n + 1):
                f[i][j] += f[i - 1][j - 1] * (n - j + 1)
                if j >= k:
                    f[i][j] += f[i - 1][j] * (j - k)
                f[i][j] %= mod
        return f[goal][n]

Java

class Solution {
    public int numMusicPlaylists(int n, int goal, int k) {
        final int mod = (int) 1e9 + 7;
        long[][] f = new long[goal + 1][n + 1];
        f[0][0] = 1;
        for (int i = 1; i <= goal; ++i) {
            for (int j = 1; j <= n; ++j) {
                f[i][j] += f[i - 1][j - 1] * (n - j + 1);
                if (j >= k) {
                    f[i][j] += f[i - 1][j] * (j - k);
                }
                f[i][j] %= mod;
            }
        }
        return (int) f[goal][n];
    }
}

C++

class Solution {
public:
    int numMusicPlaylists(int n, int goal, int k) {
        const int mod = 1e9 + 7;
        long long f[goal + 1][n + 1];
        memset(f, 0, sizeof(f));
        f[0][0] = 1;
        for (int i = 1; i <= goal; ++i) {
            for (int j = 1; j <= n; ++j) {
                f[i][j] += f[i - 1][j - 1] * (n - j + 1);
                if (j >= k) {
                    f[i][j] += f[i - 1][j] * (j - k);
                }
                f[i][j] %= mod;
            }
        }
        return f[goal][n];
    }
};

Go

func numMusicPlaylists(n int, goal int, k int) int {
	const mod = 1e9 + 7
	f := make([][]int, goal+1)
	for i := range f {
		f[i] = make([]int, n+1)
	}
	f[0][0] = 1
	for i := 1; i <= goal; i++ {
		for j := 1; j <= n; j++ {
			f[i][j] += f[i-1][j-1] * (n - j + 1)
			if j >= k {
				f[i][j] += f[i-1][j] * (j - k)
			}
			f[i][j] %= mod
		}
	}
	return f[goal][n]
}

...