We can use run-length encoding (i.e., RLE) to encode a sequence of integers. In a run-length encoded array of even length encoding
(0-indexed), for all even i
, encoding[i]
tells us the number of times that the non-negative integer value encoding[i + 1]
is repeated in the sequence.
- For example, the sequence
arr = [8,8,8,5,5]
can be encoded to beencoding = [3,8,2,5]
.encoding = [3,8,0,9,2,5]
andencoding = [2,8,1,8,2,5]
are also valid RLE ofarr
.
Given a run-length encoded array, design an iterator that iterates through it.
Implement the RLEIterator
class:
RLEIterator(int[] encoded)
Initializes the object with the encoded arrayencoded
.int next(int n)
Exhausts the nextn
elements and returns the last element exhausted in this way. If there is no element left to exhaust, return-1
instead.
Example 1:
Input ["RLEIterator", "next", "next", "next", "next"] [[[3, 8, 0, 9, 2, 5]], [2], [1], [1], [2]] Output [null, 8, 8, 5, -1] Explanation RLEIterator rLEIterator = new RLEIterator([3, 8, 0, 9, 2, 5]); // This maps to the sequence [8,8,8,5,5]. rLEIterator.next(2); // exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5]. rLEIterator.next(1); // exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5]. rLEIterator.next(1); // exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5]. rLEIterator.next(2); // exhausts 2 terms, returning -1. This is because the first term exhausted was 5, but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Constraints:
2 <= encoding.length <= 1000
encoding.length
is even.0 <= encoding[i] <= 109
1 <= n <= 109
- At most
1000
calls will be made tonext
.
class RLEIterator:
def __init__(self, encoding: List[int]):
self.encoding = encoding
self.i = 0
self.curr = 0
def next(self, n: int) -> int:
while self.i < len(self.encoding):
if self.curr + n > self.encoding[self.i]:
n -= self.encoding[self.i] - self.curr
self.curr = 0
self.i += 2
else:
self.curr += n
return self.encoding[self.i + 1]
return -1
# Your RLEIterator object will be instantiated and called as such:
# obj = RLEIterator(encoding)
# param_1 = obj.next(n)
class RLEIterator {
private int[] encoding;
private int curr;
private int i;
public RLEIterator(int[] encoding) {
this.encoding = encoding;
curr = 0;
i = 0;
}
public int next(int n) {
while (i < encoding.length) {
if (curr + n > encoding[i]) {
n -= encoding[i] - curr;
i += 2;
curr = 0;
} else {
curr += n;
return encoding[i + 1];
}
}
return -1;
}
}
/**
* Your RLEIterator object will be instantiated and called as such:
* RLEIterator obj = new RLEIterator(encoding);
* int param_1 = obj.next(n);
*/
class RLEIterator {
public:
vector<int> encoding;
int curr;
int i;
RLEIterator(vector<int>& encoding) {
this->encoding = encoding;
this->curr = 0;
this->i = 0;
}
int next(int n) {
while (i < encoding.size()) {
if (curr + n > encoding[i]) {
n -= encoding[i] - curr;
curr = 0;
i += 2;
} else {
curr += n;
return encoding[i + 1];
}
}
return -1;
}
};
/**
* Your RLEIterator object will be instantiated and called as such:
* RLEIterator* obj = new RLEIterator(encoding);
* int param_1 = obj->next(n);
*/
type RLEIterator struct {
encoding []int
curr int
i int
}
func Constructor(encoding []int) RLEIterator {
return RLEIterator{encoding: encoding, curr: 0, i: 0}
}
func (this *RLEIterator) Next(n int) int {
for this.i < len(this.encoding) {
if this.curr+n > this.encoding[this.i] {
n -= this.encoding[this.i] - this.curr
this.curr = 0
this.i += 2
} else {
this.curr += n
return this.encoding[this.i+1]
}
}
return -1
}
/**
* Your RLEIterator object will be instantiated and called as such:
* obj := Constructor(encoding);
* param_1 := obj.Next(n);
*/