You are given an integer array nums
and an integer k
. You can partition the array into at most k
non-empty adjacent subarrays. The score of a partition is the sum of the averages of each subarray.
Note that the partition must use every integer in nums
, and that the score is not necessarily an integer.
Return the maximum score you can achieve of all the possible partitions. Answers within 10-6
of the actual answer will be accepted.
Example 1:
Input: nums = [9,1,2,3,9], k = 3 Output: 20.00000 Explanation: The best choice is to partition nums into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20. We could have also partitioned nums into [9, 1], [2], [3, 9], for example. That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.
Example 2:
Input: nums = [1,2,3,4,5,6,7], k = 4 Output: 20.50000
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 104
1 <= k <= nums.length
class Solution:
def largestSumOfAverages(self, nums: List[int], k: int) -> float:
@cache
def dfs(i, k):
if i == n:
return 0
if k == 1:
return (s[-1] - s[i]) / (n - i)
ans = 0
for j in range(i, n):
t = (s[j + 1] - s[i]) / (j - i + 1) + dfs(j + 1, k - 1)
ans = max(ans, t)
return ans
n = len(nums)
s = list(accumulate(nums, initial=0))
return dfs(0, k)
class Solution {
private Double[][] f;
private int[] s;
private int n;
public double largestSumOfAverages(int[] nums, int k) {
n = nums.length;
s = new int[n + 1];
f = new Double[n + 1][k + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
return dfs(0, k);
}
private double dfs(int i, int k) {
if (i == n) {
return 0;
}
if (k == 1) {
return (s[n] - s[i]) * 1.0 / (n - i);
}
if (f[i][k] != null) {
return f[i][k];
}
double ans = 0;
for (int j = i; j < n; ++j) {
double t = (s[j + 1] - s[i]) * 1.0 / (j - i + 1) + dfs(j + 1, k - 1);
ans = Math.max(ans, t);
}
return f[i][k] = ans;
}
}
class Solution {
public:
double largestSumOfAverages(vector<int>& nums, int k) {
int n = nums.size();
int s[n + 1];
double f[n][k + 1];
s[0] = 0;
memset(f, 0, sizeof f);
for (int i = 0; i < n; ++i) s[i + 1] = s[i] + nums[i];
function<double(int, int)> dfs = [&](int i, int k) -> double {
if (i == n) return 0;
if (k == 1) return (s[n] - s[i]) * 1.0 / (n - i);
if (f[i][k]) return f[i][k];
double ans = 0;
for (int j = i; j < n; ++j) {
double t = (s[j + 1] - s[i]) * 1.0 / (j - i + 1) + dfs(j + 1, k - 1);
ans = max(ans, t);
}
return f[i][k] = ans;
};
return dfs(0, k);
}
};
func largestSumOfAverages(nums []int, k int) float64 {
n := len(nums)
s := make([]int, n+1)
f := [110][110]float64{}
for i, v := range nums {
s[i+1] = s[i] + v
}
var dfs func(i, k int) float64
dfs = func(i, k int) float64 {
if i == n {
return 0
}
if k == 1 {
return float64(s[n]-s[i]) / float64(n-i)
}
if f[i][k] > 0 {
return f[i][k]
}
var ans float64
for j := i; j < n; j++ {
t := float64(s[j+1]-s[i])/float64(j-i+1) + dfs(j+1, k-1)
ans = math.Max(ans, t)
}
f[i][k] = ans
return ans
}
return dfs(0, k)
}