Skip to content

Latest commit

 

History

History
184 lines (156 loc) · 5.18 KB

File metadata and controls

184 lines (156 loc) · 5.18 KB

中文文档

Description

You are given an m x n binary matrix grid. An island is a group of 1's (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.

An island is considered to be the same as another if and only if one island can be translated (and not rotated or reflected) to equal the other.

Return the number of distinct islands.

 

Example 1:

Input: grid = [[1,1,0,0,0],[1,1,0,0,0],[0,0,0,1,1],[0,0,0,1,1]]
Output: 1

Example 2:

Input: grid = [[1,1,0,1,1],[1,0,0,0,0],[0,0,0,0,1],[1,1,0,1,1]]
Output: 3

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • grid[i][j] is either 0 or 1.

Solutions

Python3

class Solution:
    def numDistinctIslands(self, grid: List[List[int]]) -> int:
        def dfs(i, j, direction, path):
            grid[i][j] = 0
            path.append(str(direction))
            dirs = [-1, 0, 1, 0, -1]
            for k in range(1, 5):
                x, y = i + dirs[k - 1], j + dirs[k]
                if 0 <= x < m and 0 <= y < n and grid[x][y] == 1:
                    dfs(x, y, k, path)
            path.append(str(-direction))

        paths = set()
        path = []
        m, n = len(grid), len(grid[0])
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 1:
                    dfs(i, j, 0, path)
                    paths.add(''.join(path))
                    path.clear()
        return len(paths)

Java

class Solution {
    private int m;
    private int n;
    private int[][] grid;

    public int numDistinctIslands(int[][] grid) {
        m = grid.length;
        n = grid[0].length;
        this.grid = grid;
        Set<String> paths = new HashSet<>();

        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    StringBuilder path = new StringBuilder();
                    dfs(i, j, 0, path);
                    paths.add(path.toString());
                }
            }
        }
        return paths.size();
    }

    private void dfs(int i, int j, int direction, StringBuilder path) {
        grid[i][j] = 0;
        path.append(direction);
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int k = 1; k < 5; ++k) {
            int x = i + dirs[k - 1];
            int y = j + dirs[k];
            if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                dfs(x, y, k, path);
            }
        }
        path.append(direction);
    }
}

C++

class Solution {
public:
    int numDistinctIslands(vector<vector<int>>& grid) {
        unordered_set<string> paths;
        string path;
        for (int i = 0; i < grid.size(); ++i) {
            for (int j = 0; j < grid[0].size(); ++j) {
                if (grid[i][j] == 1) {
                    path = "";
                    dfs(i, j, 0, grid, path);
                    paths.insert(path);
                }
            }
        }
        return paths.size();
    }

    void dfs(int i, int j, int direction, vector<vector<int>>& grid, string& path) {
        grid[i][j] = 0;
        path += to_string(direction);
        vector<int> dirs = {-1, 0, 1, 0, -1};
        for (int k = 1; k < 5; ++k) {
            int x = i + dirs[k - 1], y = j + dirs[k];
            if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == 1)
                dfs(x, y, k, grid, path);
        }
        path += to_string(direction);
    }
};

Go

func numDistinctIslands(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	paths := make(map[string]bool)
	path := ""
	var dfs func(i, j, direction int)
	dfs = func(i, j, direction int) {
		grid[i][j] = 0
		path += strconv.Itoa(direction)
		dirs := []int{-1, 0, 1, 0, -1}
		for k := 1; k < 5; k++ {
			x, y := i+dirs[k-1], j+dirs[k]
			if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 {
				dfs(x, y, k)
			}
		}
		path += strconv.Itoa(direction)
	}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if grid[i][j] == 1 {
				path = ""
				dfs(i, j, 0)
				paths[path] = true
			}
		}
	}
	return len(paths)
}

...