给你一个整数数组 nums
和一个整数 k
,找出三个长度为 k
、互不重叠、且全部数字和(3 * k
项)最大的子数组,并返回这三个子数组。
以下标的数组形式返回结果,数组中的每一项分别指示每个子数组的起始位置(下标从 0 开始)。如果有多个结果,返回字典序最小的一个。
示例 1:
输入:nums = [1,2,1,2,6,7,5,1], k = 2 输出:[0,3,5] 解释:子数组 [1, 2], [2, 6], [7, 5] 对应的起始下标为 [0, 3, 5]。 也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。
示例 2:
输入:nums = [1,2,1,2,1,2,1,2,1], k = 2 输出:[0,2,4]
提示:
1 <= nums.length <= 2 * 104
1 <= nums[i] < 216
1 <= k <= floor(nums.length / 3)
滑动窗口,枚举第三个子数组的位置,同时维护前两个无重叠子数组的最大和及其位置。
class Solution:
def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
s = s1 = s2 = s3 = 0
mx1 = mx12 = 0
idx1, idx12 = 0, ()
ans = []
for i in range(k * 2, len(nums)):
s1 += nums[i - k * 2]
s2 += nums[i - k]
s3 += nums[i]
if i >= k * 3 - 1:
if s1 > mx1:
mx1 = s1
idx1 = i - k * 3 + 1
if mx1 + s2 > mx12:
mx12 = mx1 + s2
idx12 = (idx1, i - k * 2 + 1)
if mx12 + s3 > s:
s = mx12 + s3
ans = [*idx12, i - k + 1]
s1 -= nums[i - k * 3 + 1]
s2 -= nums[i - k * 2 + 1]
s3 -= nums[i - k + 1]
return ans
class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int[] ans = new int[3];
int s = 0, s1 = 0, s2 = 0, s3 = 0;
int mx1 = 0, mx12 = 0;
int idx1 = 0, idx121 = 0, idx122 = 0;
for (int i = k * 2; i < nums.length; ++i) {
s1 += nums[i - k * 2];
s2 += nums[i - k];
s3 += nums[i];
if (i >= k * 3 - 1) {
if (s1 > mx1) {
mx1 = s1;
idx1 = i - k * 3 + 1;
}
if (mx1 + s2 > mx12) {
mx12 = mx1 + s2;
idx121 = idx1;
idx122 = i - k * 2 + 1;
}
if (mx12 + s3 > s) {
s = mx12 + s3;
ans = new int[] {idx121, idx122, i - k + 1};
}
s1 -= nums[i - k * 3 + 1];
s2 -= nums[i - k * 2 + 1];
s3 -= nums[i - k + 1];
}
}
return ans;
}
}
class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
vector<int> ans(3);
int s = 0, s1 = 0, s2 = 0, s3 = 0;
int mx1 = 0, mx12 = 0;
int idx1 = 0, idx121 = 0, idx122 = 0;
for (int i = k * 2; i < nums.size(); ++i) {
s1 += nums[i - k * 2];
s2 += nums[i - k];
s3 += nums[i];
if (i >= k * 3 - 1) {
if (s1 > mx1) {
mx1 = s1;
idx1 = i - k * 3 + 1;
}
if (mx1 + s2 > mx12) {
mx12 = mx1 + s2;
idx121 = idx1;
idx122 = i - k * 2 + 1;
}
if (mx12 + s3 > s) {
s = mx12 + s3;
ans = {idx121, idx122, i - k + 1};
}
s1 -= nums[i - k * 3 + 1];
s2 -= nums[i - k * 2 + 1];
s3 -= nums[i - k + 1];
}
}
return ans;
}
};
func maxSumOfThreeSubarrays(nums []int, k int) []int {
ans := make([]int, 3)
s, s1, s2, s3 := 0, 0, 0, 0
mx1, mx12 := 0, 0
idx1, idx121, idx122 := 0, 0, 0
for i := k * 2; i < len(nums); i++ {
s1 += nums[i-k*2]
s2 += nums[i-k]
s3 += nums[i]
if i >= k*3-1 {
if s1 > mx1 {
mx1 = s1
idx1 = i - k*3 + 1
}
if mx1+s2 > mx12 {
mx12 = mx1 + s2
idx121 = idx1
idx122 = i - k*2 + 1
}
if mx12+s3 > s {
s = mx12 + s3
ans = []int{idx121, idx122, i - k + 1}
}
s1 -= nums[i-k*3+1]
s2 -= nums[i-k*2+1]
s3 -= nums[i-k+1]
}
}
return ans
}