图片在计算机处理中往往是使用二维矩阵来表示的。
给你一个大小为 m x n
的二进制矩阵 image
表示一张黑白图片,0
代表白色像素,1
代表黑色像素。
黑色像素相互连接,也就是说,图片中只会有一片连在一块儿的黑色像素。像素点是水平或竖直方向连接的。
给你两个整数 x
和 y
表示某一个黑色像素的位置,请你找出包含全部黑色像素的最小矩形(与坐标轴对齐),并返回该矩形的面积。
你必须设计并实现一个时间复杂度低于 O(mn)
的算法来解决此问题。
示例 1:
输入:image = [["0","0","1","0"],["0","1","1","0"],["0","1","0","0"]], x = 0, y = 2 输出:6
示例 2:
输入:image = [["1"]], x = 0, y = 0 输出:1
提示:
m == image.length
n == image[i].length
1 <= m, n <= 100
image[i][j]
为'0'
或'1'
1 <= x < m
1 <= y < n
image[x][y] == '1'
image
中的黑色像素仅形成一个 组件
二分查找,时间复杂度 O(mlogn + nlogm)
。
class Solution:
def minArea(self, image: List[List[str]], x: int, y: int) -> int:
m, n = len(image), len(image[0])
left, right = 0, x
while left < right:
mid = (left + right) >> 1
c = 0
while c < n and image[mid][c] == '0':
c += 1
if c < n:
right = mid
else:
left = mid + 1
u = left
left, right = x, m - 1
while left < right:
mid = (left + right + 1) >> 1
c = 0
while c < n and image[mid][c] == '0':
c += 1
if c < n:
left = mid
else:
right = mid - 1
d = left
left, right = 0, y
while left < right:
mid = (left + right) >> 1
r = 0
while r < m and image[r][mid] == '0':
r += 1
if r < m:
right = mid
else:
left = mid + 1
l = left
left, right = y, n - 1
while left < right:
mid = (left + right + 1) >> 1
r = 0
while r < m and image[r][mid] == '0':
r += 1
if r < m:
left = mid
else:
right = mid - 1
r = left
return (d - u + 1) * (r - l + 1)
class Solution {
public int minArea(char[][] image, int x, int y) {
int m = image.length, n = image[0].length;
int left = 0, right = x;
while (left < right) {
int mid = (left + right) >> 1;
int c = 0;
while (c < n && image[mid][c] == '0') {
++c;
}
if (c < n) {
right = mid;
} else {
left = mid + 1;
}
}
int u = left;
left = x;
right = m - 1;
while (left < right) {
int mid = (left + right + 1) >> 1;
int c = 0;
while (c < n && image[mid][c] == '0') {
++c;
}
if (c < n) {
left = mid;
} else {
right = mid - 1;
}
}
int d = left;
left = 0;
right = y;
while (left < right) {
int mid = (left + right) >> 1;
int r = 0;
while (r < m && image[r][mid] == '0') {
++r;
}
if (r < m) {
right = mid;
} else {
left = mid + 1;
}
}
int l = left;
left = y;
right = n - 1;
while (left < right) {
int mid = (left + right + 1) >> 1;
int r = 0;
while (r < m && image[r][mid] == '0') {
++r;
}
if (r < m) {
left = mid;
} else {
right = mid - 1;
}
}
int r = left;
return (d - u + 1) * (r - l + 1);
}
}
class Solution {
public:
int minArea(vector<vector<char>>& image, int x, int y) {
int m = image.size(), n = image[0].size();
int left = 0, right = x;
while (left < right) {
int mid = (left + right) >> 1;
int c = 0;
while (c < n && image[mid][c] == '0') ++c;
if (c < n)
right = mid;
else
left = mid + 1;
}
int u = left;
left = x;
right = m - 1;
while (left < right) {
int mid = (left + right + 1) >> 1;
int c = 0;
while (c < n && image[mid][c] == '0') ++c;
if (c < n)
left = mid;
else
right = mid - 1;
}
int d = left;
left = 0;
right = y;
while (left < right) {
int mid = (left + right) >> 1;
int r = 0;
while (r < m && image[r][mid] == '0') ++r;
if (r < m)
right = mid;
else
left = mid + 1;
}
int l = left;
left = y;
right = n - 1;
while (left < right) {
int mid = (left + right + 1) >> 1;
int r = 0;
while (r < m && image[r][mid] == '0') ++r;
if (r < m)
left = mid;
else
right = mid - 1;
}
int r = left;
return (d - u + 1) * (r - l + 1);
}
};
func minArea(image [][]byte, x int, y int) int {
m, n := len(image), len(image[0])
left, right := 0, x
for left < right {
mid := (left + right) >> 1
c := 0
for c < n && image[mid][c] == '0' {
c++
}
if c < n {
right = mid
} else {
left = mid + 1
}
}
u := left
left, right = x, m-1
for left < right {
mid := (left + right + 1) >> 1
c := 0
for c < n && image[mid][c] == '0' {
c++
}
if c < n {
left = mid
} else {
right = mid - 1
}
}
d := left
left, right = 0, y
for left < right {
mid := (left + right) >> 1
r := 0
for r < m && image[r][mid] == '0' {
r++
}
if r < m {
right = mid
} else {
left = mid + 1
}
}
l := left
left, right = y, n-1
for left < right {
mid := (left + right + 1) >> 1
r := 0
for r < m && image[r][mid] == '0' {
r++
}
if r < m {
left = mid
} else {
right = mid - 1
}
}
r := left
return (d - u + 1) * (r - l + 1)
}