Skip to content

Latest commit

 

History

History
316 lines (282 loc) · 7.75 KB

File metadata and controls

316 lines (282 loc) · 7.75 KB

English Version

题目描述

图片在计算机处理中往往是使用二维矩阵来表示的。

给你一个大小为 m x n 的二进制矩阵 image 表示一张黑白图片,0 代表白色像素,1 代表黑色像素。

黑色像素相互连接,也就是说,图片中只会有一片连在一块儿的黑色像素。像素点是水平或竖直方向连接的。

给你两个整数 xy 表示某一个黑色像素的位置,请你找出包含全部黑色像素的最小矩形(与坐标轴对齐),并返回该矩形的面积。

你必须设计并实现一个时间复杂度低于 O(mn) 的算法来解决此问题。

 

示例 1:

输入:image = [["0","0","1","0"],["0","1","1","0"],["0","1","0","0"]], x = 0, y = 2
输出:6

示例 2:

输入:image = [["1"]], x = 0, y = 0
输出:1

 

提示:

  • m == image.length
  • n == image[i].length
  • 1 <= m, n <= 100
  • image[i][j]'0''1'
  • 1 <= x < m
  • 1 <= y < n
  • image[x][y] == '1'
  • image 中的黑色像素仅形成一个 组件

解法

二分查找,时间复杂度 O(mlogn + nlogm)

Python3

class Solution:
    def minArea(self, image: List[List[str]], x: int, y: int) -> int:
        m, n = len(image), len(image[0])
        left, right = 0, x
        while left < right:
            mid = (left + right) >> 1
            c = 0
            while c < n and image[mid][c] == '0':
                c += 1
            if c < n:
                right = mid
            else:
                left = mid + 1
        u = left
        left, right = x, m - 1
        while left < right:
            mid = (left + right + 1) >> 1
            c = 0
            while c < n and image[mid][c] == '0':
                c += 1
            if c < n:
                left = mid
            else:
                right = mid - 1
        d = left
        left, right = 0, y
        while left < right:
            mid = (left + right) >> 1
            r = 0
            while r < m and image[r][mid] == '0':
                r += 1
            if r < m:
                right = mid
            else:
                left = mid + 1
        l = left
        left, right = y, n - 1
        while left < right:
            mid = (left + right + 1) >> 1
            r = 0
            while r < m and image[r][mid] == '0':
                r += 1
            if r < m:
                left = mid
            else:
                right = mid - 1
        r = left
        return (d - u + 1) * (r - l + 1)

Java

class Solution {

    public int minArea(char[][] image, int x, int y) {
        int m = image.length, n = image[0].length;
        int left = 0, right = x;
        while (left < right) {
            int mid = (left + right) >> 1;
            int c = 0;
            while (c < n && image[mid][c] == '0') {
                ++c;
            }
            if (c < n) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        int u = left;
        left = x;
        right = m - 1;
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            int c = 0;
            while (c < n && image[mid][c] == '0') {
                ++c;
            }
            if (c < n) {
                left = mid;
            } else {
                right = mid - 1;
            }
        }
        int d = left;
        left = 0;
        right = y;
        while (left < right) {
            int mid = (left + right) >> 1;
            int r = 0;
            while (r < m && image[r][mid] == '0') {
                ++r;
            }
            if (r < m) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        int l = left;
        left = y;
        right = n - 1;
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            int r = 0;
            while (r < m && image[r][mid] == '0') {
                ++r;
            }
            if (r < m) {
                left = mid;
            } else {
                right = mid - 1;
            }
        }
        int r = left;
        return (d - u + 1) * (r - l + 1);
    }
}

C++

class Solution {
public:
    int minArea(vector<vector<char>>& image, int x, int y) {
        int m = image.size(), n = image[0].size();
        int left = 0, right = x;
        while (left < right) {
            int mid = (left + right) >> 1;
            int c = 0;
            while (c < n && image[mid][c] == '0') ++c;
            if (c < n)
                right = mid;
            else
                left = mid + 1;
        }
        int u = left;
        left = x;
        right = m - 1;
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            int c = 0;
            while (c < n && image[mid][c] == '0') ++c;
            if (c < n)
                left = mid;
            else
                right = mid - 1;
        }
        int d = left;
        left = 0;
        right = y;
        while (left < right) {
            int mid = (left + right) >> 1;
            int r = 0;
            while (r < m && image[r][mid] == '0') ++r;
            if (r < m)
                right = mid;
            else
                left = mid + 1;
        }
        int l = left;
        left = y;
        right = n - 1;
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            int r = 0;
            while (r < m && image[r][mid] == '0') ++r;
            if (r < m)
                left = mid;
            else
                right = mid - 1;
        }
        int r = left;
        return (d - u + 1) * (r - l + 1);
    }
};

Go

func minArea(image [][]byte, x int, y int) int {
	m, n := len(image), len(image[0])
	left, right := 0, x
	for left < right {
		mid := (left + right) >> 1
		c := 0
		for c < n && image[mid][c] == '0' {
			c++
		}
		if c < n {
			right = mid
		} else {
			left = mid + 1
		}
	}
	u := left
	left, right = x, m-1
	for left < right {
		mid := (left + right + 1) >> 1
		c := 0
		for c < n && image[mid][c] == '0' {
			c++
		}
		if c < n {
			left = mid
		} else {
			right = mid - 1
		}
	}
	d := left
	left, right = 0, y
	for left < right {
		mid := (left + right) >> 1
		r := 0
		for r < m && image[r][mid] == '0' {
			r++
		}
		if r < m {
			right = mid
		} else {
			left = mid + 1
		}
	}
	l := left
	left, right = y, n-1
	for left < right {
		mid := (left + right + 1) >> 1
		r := 0
		for r < m && image[r][mid] == '0' {
			r++
		}
		if r < m {
			left = mid
		} else {
			right = mid - 1
		}
	}
	r := left
	return (d - u + 1) * (r - l + 1)
}

...