在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]] 输出:4
示例 2:
输入:matrix = [["0","1"],["1","0"]] 输出:1
示例 3:
输入:matrix = [["0"]] 输出:0
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
为'0'
或'1'
方法一:动态规划
我们定义
状态转移方程为:
时间复杂度
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
m, n = len(matrix), len(matrix[0])
dp = [[0] * (n + 1) for _ in range(m + 1)]
mx = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == '1':
dp[i + 1][j + 1] = min(dp[i][j + 1], dp[i + 1][j], dp[i][j]) + 1
mx = max(mx, dp[i + 1][j + 1])
return mx * mx
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m + 1][n + 1];
int mx = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i + 1][j + 1] = Math.min(Math.min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
mx = Math.max(mx, dp[i + 1][j + 1]);
}
}
}
return mx * mx;
}
}
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
int mx = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i + 1][j + 1] = min(min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
mx = max(mx, dp[i + 1][j + 1]);
}
}
}
return mx * mx;
}
};
func maximalSquare(matrix [][]byte) int {
m, n := len(matrix), len(matrix[0])
dp := make([][]int, m+1)
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
}
mx := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if matrix[i][j] == '1' {
dp[i+1][j+1] = min(min(dp[i][j+1], dp[i+1][j]), dp[i][j]) + 1
mx = max(mx, dp[i+1][j+1])
}
}
}
return mx * mx
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
public class Solution {
public int MaximalSquare(char[][] matrix) {
int m = matrix.Length, n = matrix[0].Length;
var dp = new int[m + 1, n + 1];
int mx = 0;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (matrix[i][j] == '1')
{
dp[i + 1, j + 1] = Math.Min(Math.Min(dp[i, j + 1], dp[i + 1, j]), dp[i, j]) + 1;
mx = Math.Max(mx, dp[i + 1, j + 1]);
}
}
}
return mx * mx;
}
}