Skip to content

Latest commit

 

History

History
263 lines (206 loc) · 5.72 KB

File metadata and controls

263 lines (206 loc) · 5.72 KB

English Version

题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

 

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

 

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

 

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

解法

1. 动态规划

dp[i] 表示 [0..i] 中,以 nums[i] 结尾的最大子数组和,状态转移方程 dp[i] = nums[i] + max(dp[i - 1], 0)

由于 dp[i] 只与子问题 dp[i-1] 有关,故可以用一个变量 f 来表示。

2. 分治

最大子数组和可能有三种情况:

  1. 在数组左半部分
  2. 在数组右半部分
  3. 跨越左右半部分

递归求得三者,返回最大值即可。

Python3

动态规划:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        res = f = nums[0]
        for num in nums[1:]:
            f = num + max(f, 0)
            res = max(res, f)
        return res

分治:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        def crossMaxSub(nums, left, mid, right):
            lsum = rsum = 0
            lmx = rmx = -inf
            for i in range(mid, left - 1, -1):
                lsum += nums[i]
                lmx = max(lmx, lsum)
            for i in range(mid + 1, right + 1):
                rsum += nums[i]
                rmx = max(rmx, rsum)
            return lmx + rmx

        def maxSub(nums, left, right):
            if left == right:
                return nums[left]
            mid = (left + right) >> 1
            lsum = maxSub(nums, left, mid)
            rsum = maxSub(nums, mid + 1, right)
            csum = crossMaxSub(nums, left, mid, right)
            return max(lsum, rsum, csum)

        left, right = 0, len(nums) - 1
        return maxSub(nums, left, right)

Java

动态规划:

class Solution {
    public int maxSubArray(int[] nums) {
        int f = nums[0], res = nums[0];
        for (int i = 1, n = nums.length; i < n; ++i) {
            f = nums[i] + Math.max(f, 0);
            res = Math.max(res, f);
        }
        return res;
    }
}

分治:

class Solution {
    public int maxSubArray(int[] nums) {
        return maxSub(nums, 0, nums.length - 1);
    }

    private int maxSub(int[] nums, int left, int right) {
        if (left == right) {
            return nums[left];
        }
        int mid = (left + right) >>> 1;
        int lsum = maxSub(nums, left, mid);
        int rsum = maxSub(nums, mid + 1, right);
        return Math.max(Math.max(lsum, rsum), crossMaxSub(nums, left, mid, right));
    }

    private int crossMaxSub(int[] nums, int left, int mid, int right) {
        int lsum = 0, rsum = 0;
        int lmx = Integer.MIN_VALUE, rmx = Integer.MIN_VALUE;
        for (int i = mid; i >= left; --i) {
            lsum += nums[i];
            lmx = Math.max(lmx, lsum);
        }
        for (int i = mid + 1; i <= right; ++i) {
            rsum += nums[i];
            rmx = Math.max(rmx, rsum);
        }
        return lmx + rmx;
    }
}

C++

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int f = nums[0], res = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            f = nums[i] + max(f, 0);
            res = max(res, f);
        }
        return res;
    }
};

JavaScript

/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function (nums) {
    let f = nums[0],
        res = nums[0];
    for (let i = 1; i < nums.length; ++i) {
        f = nums[i] + Math.max(f, 0);
        res = Math.max(res, f);
    }
    return res;
};

Go

func maxSubArray(nums []int) int {
    f, res := nums[0], nums[0]
    for i := 1; i < len(nums); i++ {
        if f > 0 {
            f += nums[i]
        } else {
            f = nums[i]
        }
        if f > res {
            res = f
        }
    }
    return res
}

C#

public class Solution {
    public int MaxSubArray(int[] nums) {
        int res = nums[0], f = nums[0];
        for (int i = 1; i < nums.Length; ++i)
        {
            f = nums[i] + Math.Max(f, 0);
            res = Math.Max(res, f);
        }
        return res;
    }
}

Rust

impl Solution {
    pub fn max_sub_array(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let mut res = nums[0];
        let mut sum = nums[0];
        for i in 1..n {
            let num = nums[i];
            sum = num.max(sum + num);
            res = res.max(sum);
        }
        res
    }
}

...