随机产生数字并传递给一个方法。你能否完成这个方法,在每次产生新值时,寻找当前所有值的中间值(中位数)并保存。
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1) addNum(2) findMedian() -> 1.5 addNum(3) findMedian() -> 2
方法一:优先队列(双堆)
创建大根堆、小根堆,其中:大根堆存放较小的一半元素,小根堆存放较大的一半元素。
添加元素时,先放入小根堆,然后将小根堆对顶元素弹出并放入大根堆(使得大根堆个数多
取中位数时,若大根堆元素较多,取大根堆堆顶,否则取两堆顶元素和的平均值。
时间复杂度分析:
每次添加元素的时间复杂度为
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.h1 = []
self.h2 = []
def addNum(self, num: int) -> None:
heappush(self.h1, num)
heappush(self.h2, -heappop(self.h1))
if len(self.h2) - len(self.h1) > 1:
heappush(self.h1, -heappop(self.h2))
def findMedian(self) -> float:
if len(self.h2) > len(self.h1):
return -self.h2[0]
return (self.h1[0] - self.h2[0]) / 2
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
class MedianFinder {
private PriorityQueue<Integer> q1 = new PriorityQueue<>();
private PriorityQueue<Integer> q2 = new PriorityQueue<>(Collections.reverseOrder());
/** initialize your data structure here. */
public MedianFinder() {
}
public void addNum(int num) {
q1.offer(num);
q2.offer(q1.poll());
if (q2.size() - q1.size() > 1) {
q1.offer(q2.poll());
}
}
public double findMedian() {
if (q2.size() > q1.size()) {
return q2.peek();
}
return (q1.peek() + q2.peek()) * 1.0 / 2;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
q1.push(num);
q2.push(q1.top());
q1.pop();
if (q2.size() - q1.size() > 1) {
q1.push(q2.top());
q2.pop();
}
}
double findMedian() {
if (q2.size() > q1.size()) {
return q2.top();
}
return (double) (q1.top() + q2.top()) / 2;
}
private:
priority_queue<int, vector<int>, greater<int>> q1;
priority_queue<int> q2;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/
type MedianFinder struct {
q1 hp
q2 hp
}
/** initialize your data structure here. */
func Constructor() MedianFinder {
return MedianFinder{hp{}, hp{}}
}
func (this *MedianFinder) AddNum(num int) {
heap.Push(&this.q1, num)
heap.Push(&this.q2, -heap.Pop(&this.q1).(int))
if this.q2.Len()-this.q1.Len() > 1 {
heap.Push(&this.q1, -heap.Pop(&this.q2).(int))
}
}
func (this *MedianFinder) FindMedian() float64 {
if this.q2.Len() > this.q1.Len() {
return -float64(this.q2.IntSlice[0])
}
return float64(this.q1.IntSlice[0]-this.q2.IntSlice[0]) / 2.0
}
/**
* Your MedianFinder object will be instantiated and called as such:
* obj := Constructor();
* obj.AddNum(num);
* param_2 := obj.FindMedian();
*/
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() interface{} {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}