动物收容所。有家动物收容所只收容狗与猫,且严格遵守“先进先出”的原则。在收养该收容所的动物时,收养人只能收养所有动物中“最老”(由其进入收容所的时间长短而定)的动物,或者可以挑选猫或狗(同时必须收养此类动物中“最老”的)。换言之,收养人不能自由挑选想收养的对象。请创建适用于这个系统的数据结构,实现各种操作方法,比如enqueue
、dequeueAny
、dequeueDog
和dequeueCat
。允许使用Java内置的LinkedList数据结构。
enqueue
方法有一个animal
参数,animal[0]
代表动物编号,animal[1]
代表动物种类,其中 0 代表猫,1 代表狗。
dequeue*
方法返回一个列表[动物编号, 动物种类]
,若没有可以收养的动物,则返回[-1,-1]
。
示例1:
输入: ["AnimalShelf", "enqueue", "enqueue", "dequeueCat", "dequeueDog", "dequeueAny"] [[], [[0, 0]], [[1, 0]], [], [], []] 输出: [null,null,null,[0,0],[-1,-1],[1,0]]
示例2:
输入: ["AnimalShelf", "enqueue", "enqueue", "enqueue", "dequeueDog", "dequeueCat", "dequeueAny"] [[], [[0, 0]], [[1, 0]], [[2, 1]], [], [], []] 输出: [null,null,null,null,[2,1],[0,0],[1,0]]
说明:
- 收纳所的最大容量为20000
双队列存储。
class AnimalShelf:
def __init__(self):
self.cats = []
self.dogs = []
def enqueue(self, animal: List[int]) -> None:
if animal[1] == 0:
self.cats.insert(0, animal[0])
else:
self.dogs.insert(0, animal[0])
def dequeueAny(self) -> List[int]:
if len(self.dogs) == 0:
return self.dequeueCat()
if len(self.cats) == 0:
return self.dequeueDog()
return self.dequeueDog() if self.dogs[-1] < self.cats[-1] else self.dequeueCat()
def dequeueDog(self) -> List[int]:
return [-1, -1] if len(self.dogs) == 0 else [self.dogs.pop(), 1]
def dequeueCat(self) -> List[int]:
return [-1, -1] if len(self.cats) == 0 else [self.cats.pop(), 0]
# Your AnimalShelf object will be instantiated and called as such:
# obj = AnimalShelf()
# obj.enqueue(animal)
# param_2 = obj.dequeueAny()
# param_3 = obj.dequeueDog()
# param_4 = obj.dequeueCat()
class AnimalShelf {
Queue<Integer> cats;
Queue<Integer> dogs;
public AnimalShelf() {
cats = new LinkedList<>();
dogs = new LinkedList<>();
}
public void enqueue(int[] animal) {
if (animal[1] == 0) {
cats.offer(animal[0]);
} else {
dogs.offer(animal[0]);
}
}
public int[] dequeueAny() {
return dogs.isEmpty()
? dequeueCat()
: (cats.isEmpty() ? dequeueDog()
: (dogs.peek() < cats.peek() ? dequeueDog() : dequeueCat()));
}
public int[] dequeueDog() {
return dogs.isEmpty() ? new int[] {-1, -1} : new int[] {dogs.poll(), 1};
}
public int[] dequeueCat() {
return cats.isEmpty() ? new int[] {-1, -1} : new int[] {cats.poll(), 0};
}
}
/**
* Your AnimalShelf object will be instantiated and called as such:
* AnimalShelf obj = new AnimalShelf();
* obj.enqueue(animal);
* int[] param_2 = obj.dequeueAny();
* int[] param_3 = obj.dequeueDog();
* int[] param_4 = obj.dequeueCat();
*/
class AnimalShelf {
private cats: number[];
private dogs: number[];
constructor() {
this.cats = [];
this.dogs = [];
}
enqueue(animal: number[]): void {
const [i, j] = animal;
this[j === 0 ? 'cats' : 'dogs'].push(i);
}
dequeueAny(): number[] {
const n = this.dogs.length;
const m = this.cats.length;
if (n === 0 && m === 0) {
return [-1, -1];
}
if ((this.dogs[0] ?? Infinity) < (this.cats[0] ?? Infinity)) {
return [this.dogs.shift(), 1];
} else {
return [this.cats.shift(), 0];
}
}
dequeueDog(): number[] {
if (this.dogs.length === 0) {
return [-1, -1];
}
return [this.dogs.shift(), 1];
}
dequeueCat(): number[] {
if (this.cats.length === 0) {
return [-1, -1];
}
return [this.cats.shift(), 0];
}
}
/**
* Your AnimalShelf object will be instantiated and called as such:
* var obj = new AnimalShelf()
* obj.enqueue(animal)
* var param_2 = obj.dequeueAny()
* var param_3 = obj.dequeueDog()
* var param_4 = obj.dequeueCat()
*/
use std::collections::VecDeque;
struct AnimalShelf {
cats: VecDeque<i32>,
dogs: VecDeque<i32>,
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl AnimalShelf {
fn new() -> Self {
Self {
cats: VecDeque::new(),
dogs: VecDeque::new(),
}
}
fn enqueue(&mut self, animal: Vec<i32>) {
if animal[1] == 0 {
self.cats.push_back(animal[0]);
} else {
self.dogs.push_back(animal[0]);
}
}
fn dequeue_any(&mut self) -> Vec<i32> {
match (self.cats.is_empty(), self.dogs.is_empty()) {
(true, true) => vec![-1, -1],
(true, false) => self.dequeue_dog(),
(false, true) => self.dequeue_cat(),
(false, false) => {
if self.dogs[0] < self.cats[0] {
self.dequeue_dog()
} else {
self.dequeue_cat()
}
}
}
}
fn dequeue_dog(&mut self) -> Vec<i32> {
if self.dogs.is_empty() {
return vec![-1, -1];
}
vec![self.dogs.pop_front().unwrap(), 1]
}
fn dequeue_cat(&mut self) -> Vec<i32> {
if self.cats.is_empty() {
return vec![-1, -1];
}
vec![self.cats.pop_front().unwrap(), 0]
}
}
/**
* Your AnimalShelf object will be instantiated and called as such:
* let obj = AnimalShelf::new();
* obj.enqueue(animal);
* let ret_2: Vec<i32> = obj.dequeue_any();
* let ret_3: Vec<i32> = obj.dequeue_dog();
* let ret_4: Vec<i32> = obj.dequeue_cat();
*/