Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

hello, I'm trying to try to turn on the program but I see an error #1

Open
nikolaiusa opened this issue Jun 14, 2023 · 3 comments
Open

Comments

@nikolaiusa
Copy link

(venv) N:\remix\venv\Scripts>python run.py N:\remix\venv\Scripts\2.png N:\remix\venv\Scripts\1.png
A matching Triton is not available, some optimizations will not be enabled.
Error caught was: No module named 'triton'
Using device: cuda
unet\diffusion_pytorch_model.safetensors not found
Keyword arguments {'variation': 'fp16'} are not expected by StableRemix and will be ignored.
Traceback (most recent call last):
File "N:\remix\venv\Scripts\run.py", line 402, in
main()
File "N:\remix\venv\Scripts\run.py", line 394, in main
images = run_remixing(pipe, content_img, style_img, [0.6, 0.65, 0.7])
File "N:\remix\venv\Scripts\run.py", line 362, in run_remixing
image = pipe(image=content_img, image_embeds=emb, **kwargs).images[0]
File "N:\remix\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "N:\remix\venv\Scripts\run.py", line 289, in call
image = image_processor.preprocess(image)
File "N:\remix\venv\Scripts\run.py", line 73, in preprocess
image = super().preprocess(image)
File "N:\remix\venv\lib\site-packages\diffusers\image_processor.py", line 169, in preprocess
image = [self.resize(i, height, width) for i in image]
File "N:\remix\venv\lib\site-packages\diffusers\image_processor.py", line 169, in
image = [self.resize(i, height, width) for i in image]
TypeError: StableRemixImageProcessor.resize() takes 2 positional arguments but 4 were given

@usamaehsan
Copy link

i have got same error, are you able to solve it?

@usamaehsan
Copy link

ok, i have solved it:
add h, w in resize function of StableRemixImageProcessor in run.py

`class StableRemixImageProcessor(VaeImageProcessor):
def init(self, w, h):
super().init()
self.w = w
self.h = h

def resize(self, image, h, w):
    image = center_resize_crop(image, self.w)
    return image

def preprocess(self, image):
    image = super().preprocess(image)
    # image = randomize_color(image)

    return image`

@nikolaiusa
Copy link
Author

ok, i have solved it: add h, w in resize function of StableRemixImageProcessor in run.py

`class StableRemixImageProcessor(VaeImageProcessor): def init(self, w, h): super().init() self.w = w self.h = h

def resize(self, image, h, w):
    image = center_resize_crop(image, self.w)
    return image

def preprocess(self, image):
    image = super().preprocess(image)
    # image = randomize_color(image)

    return image`

thx mister

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants