-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathsample_scaffolds.py
executable file
·288 lines (236 loc) · 12.8 KB
/
sample_scaffolds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
# coding=utf-8
import argparse
import shutil
import tempfile
import pyspark.sql as ps
import pyspark.sql.functions as psf
import pyspark.sql.types as pst
import models.model as mm
import models.actions as ma
import utils.log as ul
import utils.chem as uc
import utils.spark as us
import utils.scaffold as usc
def _cleanup_decoration(dec_smi):
dec_mol = uc.to_mol(dec_smi)
if not dec_mol:
return None
return usc.to_smiles(usc.remove_attachment_point_numbers(dec_mol))
class SampleScaffolds(ma.Action):
cleanup_decoration_udf = psf.udf(_cleanup_decoration, pst.StringType())
def __init__(self, model, batch_size=128, num_randomized_smiles=32, num_decorations_per_scaffold=32,
max_randomized_smiles_sample=10000, num_partitions=1000, decorator_type="multi",
repeated_randomized_smiles=False, logger=None):
ma.Action.__init__(self, logger)
self.model = model
self.batch_size = batch_size
self.num_randomized_smiles = num_randomized_smiles
self.num_decorations_per_scaffold = num_decorations_per_scaffold
self.max_randomized_smiles_sample = max_randomized_smiles_sample
self.num_partitions = num_partitions
self.decorator_type = decorator_type
self.repeated_randomized_smiles = repeated_randomized_smiles
self._sample_model_action = ma.SampleModel(self.model, self.batch_size, self.logger)
self._tmp_dir = tempfile.mkdtemp(prefix="gen_lib")
def _generate_randomized_not_repeated(
smi, num_rand=self.num_randomized_smiles,
max_rand=self.max_randomized_smiles_sample):
mol = uc.to_mol(smi)
randomized_scaffolds = set()
for _ in range(max_rand):
randomized_scaffolds.add(usc.to_smiles(mol, variant="random"))
if len(randomized_scaffolds) == num_rand:
break
return list(randomized_scaffolds)
def _generate_randomized_repeated(smi, num_rand=self.num_randomized_smiles):
mol = uc.to_mol(smi)
return [usc.to_smiles(mol, variant="random") for _ in range(num_rand)]
if repeated_randomized_smiles:
self._generate_func = _generate_randomized_repeated
else:
self._generate_func = _generate_randomized_not_repeated
def __del__(self):
shutil.rmtree(self._tmp_dir, ignore_errors=True)
def run(self, initial_scaffolds):
randomized_scaffold_udf = psf.udf(self._generate_func, pst.ArrayType(pst.StringType()))
get_attachment_points_udf = psf.udf(usc.get_attachment_points, pst.ArrayType(pst.IntegerType()))
remove_attachment_point_numbers_udf = psf.udf(usc.remove_attachment_point_numbers, pst.StringType())
results_df = self._initialize_results(initial_scaffolds)
scaffolds_df = results_df.select("smiles", "scaffold", "decorations")
i = 0
while scaffolds_df.count() > 0:
# generate randomized SMILES
self._log("info", "Starting iteration #%d.", i)
scaffolds_df = scaffolds_df.withColumn("randomized_scaffold", randomized_scaffold_udf("smiles"))\
.select(
"smiles", "scaffold", "decorations",
psf.explode("randomized_scaffold").alias("randomized_scaffold"))\
.withColumn("attachment_points", get_attachment_points_udf("randomized_scaffold"))\
.withColumn("randomized_scaffold", remove_attachment_point_numbers_udf("randomized_scaffold"))\
.withColumn("id", psf.monotonically_increasing_id())\
.persist()
self._log("info", "Generated %d randomized SMILES from %d scaffolds.",
scaffolds_df.count(), scaffolds_df.select("smiles").distinct().count())
# sample each randomized scaffold N times
scaffolds = scaffolds_df.select("id", "randomized_scaffold")\
.rdd.map(lambda row: (row["id"], row["randomized_scaffold"])).toLocalIterator()
self._sample_and_write_scaffolds_to_disk(scaffolds, scaffolds_df.count())
self._log("info", "Sampled %d scaffolds.", scaffolds_df.count())
# merge decorated molecules
joined_df = self._join_results(scaffolds_df).persist()
if joined_df.count() > 0:
self._log("info", "Joined %d -> %d (valid) -> %d unique sampled scaffolds",
scaffolds_df.count(), joined_df.agg(psf.sum("count")).head()[0], joined_df.count())
scaffolds_df = joined_df.join(results_df, on="smiles", how="left_anti")\
.select("smiles", "scaffold", "decorations")\
.where("smiles LIKE '%*%'")
self._log("info", "Obtained %d scaffolds for next iteration.", scaffolds_df.count())
results_df = results_df.union(joined_df)\
.groupBy("smiles")\
.agg(
psf.first("scaffold").alias("scaffold"),
psf.first("decorations").alias("decorations"),
psf.sum("count").alias("count"))\
.persist()
i += 1
return results_df
def _initialize_results(self, scaffolds):
data = [ps.Row(smiles=scaffold, scaffold=scaffold,
decorations={}, count=1) for scaffold in scaffolds]
data_schema = pst.StructType([
pst.StructField("smiles", pst.StringType()),
pst.StructField("scaffold", pst.StringType()),
pst.StructField("decorations", pst.MapType(pst.IntegerType(), pst.StringType())),
pst.StructField("count", pst.IntegerType())
])
return SPARK.createDataFrame(data, schema=data_schema)
def _sample_and_write_scaffolds_to_disk(self, scaffolds, total_scaffolds):
def _update_file(out_file, idxs, buffer):
for idx, (scaff, dec, _) in zip(idxs, self._sample_model_action.run(buffer)):
out_file.write("{}\t{}\t{}\n".format(idx, scaff, dec))
out_file = open(self._tmp_path("sampled_decorations"), "w+")
scaffold_buffer = []
idxs_buffer = []
for (idx, scaffold) in ul.progress_bar(scaffolds, total=total_scaffolds, desc="Sampling"):
scaffold_buffer += [scaffold]*self.num_decorations_per_scaffold
idxs_buffer += [idx]*self.num_decorations_per_scaffold
if len(scaffold_buffer) >= self.batch_size*128:
_update_file(out_file, idxs_buffer, scaffold_buffer)
scaffold_buffer = []
idxs_buffer = []
if scaffold_buffer:
_update_file(out_file, idxs_buffer, scaffold_buffer)
out_file.close()
def _join_results(self, scaffolds_df):
def _read_rows(row):
idx, _, dec = row.split("\t")
return ps.Row(id=idx, decoration_smi=dec)
sampled_df = SPARK.createDataFrame(SC.textFile(self._tmp_path(
"sampled_decorations"), self.num_partitions).map(_read_rows))
if self.decorator_type == "single":
processed_df = self._join_results_single(scaffolds_df, sampled_df)
elif self.decorator_type == "multi":
processed_df = self._join_results_multi(scaffolds_df, sampled_df)
else:
raise ValueError("decorator_type has an invalid value '{}'".format(self.decorator_type))
return processed_df\
.where("smiles IS NOT NULL")\
.groupBy("smiles")\
.agg(
psf.first("scaffold").alias("scaffold"),
psf.first("decorations").alias("decorations"),
psf.count("smiles").alias("count"))
def _join_results_multi(self, scaffolds_df, sampled_df):
def _join_scaffold(scaff, dec):
mol = usc.join(scaff, dec)
if mol:
return usc.to_smiles(mol)
def _format_attachment_point(smi, num):
smi = usc.add_first_attachment_point_number(smi, num)
return usc.to_smiles(uc.to_mol(smi)) # canonicalize
join_scaffold_udf = psf.udf(_join_scaffold, pst.StringType())
format_attachment_point_udf = psf.udf(_format_attachment_point, pst.StringType())
return sampled_df.join(scaffolds_df, on="id")\
.withColumn("decoration", format_attachment_point_udf("decoration_smi", psf.col("attachment_points")[0]))\
.select(
join_scaffold_udf("smiles", "decoration").alias("smiles"),
psf.map_concat(
psf.create_map(psf.col("attachment_points")[0],
SampleScaffolds.cleanup_decoration_udf("decoration")),
"decorations",
).alias("decorations"),
"scaffold")
def _join_results_single(self, scaffolds_df, sampled_df):
def _join_scaffold(scaff, decs):
mol = usc.join_joined_attachments(scaff, decs)
if mol:
return usc.to_smiles(mol)
join_scaffold_udf = psf.udf(_join_scaffold, pst.StringType())
def _create_decorations_map(decorations_smi, attachment_points):
decorations = decorations_smi.split(usc.ATTACHMENT_SEPARATOR_TOKEN)
return {idx: _cleanup_decoration(dec) for dec, idx in zip(decorations, attachment_points)}
create_decorations_map_udf = psf.udf(_create_decorations_map, pst.MapType(pst.IntegerType(), pst.StringType()))
return sampled_df.join(scaffolds_df, on="id")\
.select(
join_scaffold_udf("randomized_scaffold", "decoration_smi").alias("smiles"),
create_decorations_map_udf("decoration_smi", "attachment_points").alias("decorations"),
"scaffold")
def _tmp_path(self, file_name):
return "{}/{}".format(self._tmp_dir, file_name)
def parse_args():
"""Parses input arguments."""
parser = argparse.ArgumentParser(description="Generates large amounts of molecules from a set of scaffolds.")
parser.add_argument("--model-path", "-m", help="Path to the model.", type=str, required=True)
parser.add_argument("--input-scaffold-path", "-i",
help="Path to the input file with scaffolds in SMILES notation.", type=str, required=True)
parser.add_argument("--output-path", "-o",
help="Path to the output file or directory (see --output-format option for more information).",
type=str, required=True)
parser.add_argument("--batch-size", "-b",
help="Batch size (beware GPU memory usage) [DEFAULT: 128]", type=int, default=128)
parser.add_argument("--num-randomized-smiles", "-r",
help="Number of randomized SMILES to use in every stage of the \
decoration process. [DEFAULT: 32]",
type=int, default=32)
parser.add_argument("--num-decorations-per-scaffold", "-n",
help="Number of times to sample the model for a given \
randomized SMILES scaffold. [DEFAULT: 32]",
type=int, default=32)
parser.add_argument("--num-partitions", "--np",
help="Number of Spark partitions to use (leave it if you don't know what it means) \
[DEFAULT: 1000]",
type=int, default=1000)
parser.add_argument("--decorator-type", "-d",
help="Type of decorator TYPES=(single, multi) [DEFAULT: multi].",
type=str, default="multi")
parser.add_argument("--output-format", "--of",
help="Format of the output FORMATS=(parquet,csv) [DEFAULT: parquet].",
type=str, default="parquet")
parser.add_argument("--repeated-randomized-smiles", help="The randomized SMILES can be repeated.",
action="store_true", default=False)
return parser.parse_args()
def main():
"""Main function."""
args = parse_args()
model = mm.DecoratorModel.load_from_file(args.model_path, mode="eval")
input_scaffolds = list(uc.read_smi_file(args.input_scaffold_path))
sample_scaffolds = SampleScaffolds(
model,
num_randomized_smiles=args.num_randomized_smiles,
num_decorations_per_scaffold=args.num_decorations_per_scaffold,
decorator_type=args.decorator_type,
batch_size=args.batch_size,
num_partitions=args.num_partitions,
repeated_randomized_smiles=args.repeated_randomized_smiles,
logger=LOG
)
results_df = sample_scaffolds.run(input_scaffolds)
if args.output_format == "parquet":
results_df.write.parquet(args.output_path)
else:
results_df.toPandas().to_csv(args.output_path)
LOG = ul.get_logger(name="sample_scaffolds")
SPARK, SC = us.SparkSessionSingleton.get("sample_scaffolds")
if __name__ == "__main__":
main()