-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOpenAIInterface.py
153 lines (137 loc) · 6.23 KB
/
OpenAIInterface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import openai
from openai import AzureOpenAI, RateLimitError, APITimeoutError, APIError, APIConnectionError
import os
import json
import time
from tqdm import tqdm
import concurrent.futures
api_keys = os.getenv("OPENAI_API_KEYS").split(",") if "OPENAI_API_KEYS" in os.environ else [os.getenv("OPENAI_API_KEY")]
def get_saved_cache(cache_filename: str):
if os.path.exists(cache_filename):
print(f"Loading {cache_filename}...")
with open(cache_filename, encoding="utf-8") as cache_file:
return json.load(cache_file)
return {}
class OpenAIInterface:
delay_time = 0.5
decay_rate = 0.8
cache = {} # Maps cache filename to prompt to result
azure_client = None
# Max number of prompts per request
API_MAX_BATCH = 20
# Codex max rate limit is 40k tokens per minute
# https://platform.openai.com/docs/guides/rate-limits/error-mitigation
MAX_TPM = float(40000)
def __init__(self, openaicfg):
self.openaicfg = openaicfg
@staticmethod
def get_client(openaicfg):
if not openaicfg.use_azure:
openai.api_type = "openai"
return openai
if OpenAIInterface.azure_client is None:
openai.api_type = "azure"
OpenAIInterface.azure_client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-09-01-preview",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
return OpenAIInterface.azure_client
@staticmethod
def get_cache(openaicfg):
cache_filename = f"oai_cache_{openaicfg.model}_tok{openaicfg.max_tokens}.json"
if cache_filename not in OpenAIInterface.cache:
OpenAIInterface.cache[cache_filename] = get_saved_cache(cache_filename)
return OpenAIInterface.cache[cache_filename]
@staticmethod
def save_cache():
for cache_filename, cache in OpenAIInterface.cache.items():
print(f"Saving {cache_filename}...")
with open(cache_filename, "w") as cache_file:
json.dump(cache, cache_file)
@staticmethod
def getCompletionForAllPrompts(openaicfg, prompts, batch_size=10, dynamic_retry=True, use_parallel=True):
# 10 is a sweet spot for batch size, pro tip from Alex
cache = OpenAIInterface.get_cache(openaicfg)
uncached_prompts = [prompt for prompt in prompts if prompt not in cache]
print(f"Found {len(prompts) - len(uncached_prompts)} prompts in cache!")
batch_size = min(batch_size, OpenAIInterface.API_MAX_BATCH)
prompt_batches = [uncached_prompts[i : i + batch_size] for i in range(0, len(uncached_prompts), batch_size)]
for prompt_batch in tqdm(prompt_batches):
if use_parallel:
batch_responses = OpenAIInterface.getParallelCompletion(openaicfg, prompt_batch, dynamic_retry=dynamic_retry)
else:
batch_responses = OpenAIInterface.getBatchCompletion(openaicfg, prompt_batch, dynamic_retry=dynamic_retry)
for prompt, response in zip(prompt_batch, batch_responses):
cache[prompt] = response
return [cache[prompt] for prompt in prompts]
@staticmethod
def getBatchCompletion(openaicfg, prompts, dynamic_retry=False):
try:
batch_response = OpenAIInterface.getCompletion(openaicfg, prompts, dynamic_retry)
batch_completions = [None] * len(prompts)
# match completions by index
for choice in batch_response.choices:
batch_completions[choice.index] = choice
return batch_completions
except Exception as e:
print(e)
raise e
@staticmethod
def getParallelCompletion(openaicfg, prompts, dynamic_retry=False):
try:
with concurrent.futures.ThreadPoolExecutor(max_workers=len(prompts)) as executor:
# Submit requests to threads
futures = [
executor.submit(OpenAIInterface.getCompletion, openaicfg, [prompt], dynamic_retry)
for prompt in prompts
]
# Wait for all to complete
concurrent.futures.wait(futures, return_when=concurrent.futures.ALL_COMPLETED)
# Accumulate results
results = [future.result() for future in futures]
return results
except Exception as e:
print(e)
raise e
@staticmethod
def getCompletion(openaicfg, prompt, dynamic_retry):
if dynamic_retry:
# TODO this should be non-blocking
time.sleep(OpenAIInterface.delay_time)
# TODO handle multiple api keys
if not OpenAIInterface.azure_client:
openai.api_key = api_keys[0]
try:
assert len(prompt) == 1, "Chat only supports one prompt"
client = OpenAIInterface.get_client(openaicfg)
if openaicfg.model.startswith("o1"):
params = {}
else:
params = {"max_tokens": openaicfg.max_tokens, "temperature": openaicfg.temperature, "timeout": 45}
response = client.chat.completions.create(
model=openaicfg.model,
messages=[
{
"role": "user",
"content": prompt[0]
}
],
**params,
top_p=openaicfg.top_p,
frequency_penalty=openaicfg.frequency_penalty,
presence_penalty=openaicfg.presence_penalty
)
if dynamic_retry:
OpenAIInterface.delay_time = max(OpenAIInterface.delay_time * OpenAIInterface.decay_rate, 0.1)
return response.choices[0].message.content
except (RateLimitError, APITimeoutError, APIError, APIConnectionError) as exc:
print(openai.api_key, exc)
if dynamic_retry:
OpenAIInterface.delay_time = min(OpenAIInterface.delay_time * 2, 30)
print(f"Backoff request detected, increasing delay to {OpenAIInterface.delay_time} seconds")
return OpenAIInterface.getCompletion(openaicfg, prompt, dynamic_retry)
raise e
except Exception as e:
print(e)
raise e