-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize.py
97 lines (91 loc) · 4.01 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import json
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from textwrap import wrap
from data_loading import get_kc_result_filename, get_qual_result_filename, get_default_fold
def visualize_single(kc_info):
target_dialogue_idx = list(kc_info.keys())[3] # 3, tried up to 9
dialogue = kc_info[target_dialogue_idx]
kc_to_curve = {}
for turn_idx, turn in enumerate(dialogue):
for kc, prob in turn.items():
kc_to_curve.setdefault(kc, {"x": [], "y": []})
kc_to_curve[kc]["x"].append(turn_idx)
kc_to_curve[kc]["y"].append(prob)
plt.rcParams["figure.figsize"] = (12,8)
for kc, curve in kc_to_curve.items():
plt.plot(curve["x"], curve["y"], label=kc)
plt.legend()
plt.show()
def visualize_average(kc_info, args):
plot_deltas = True
plot_means = True
kc_to_probs = {}
for dialogue in kc_info.values():
# Get sequential list of predicted probabilities for each KC in this dialogue
dia_kc_to_probs = {}
for turn in dialogue:
for kc, prob in turn.items():
dia_kc_to_probs.setdefault(kc, []).append(prob)
# Add each of those lists to global running list per KC
for kc, probs in dia_kc_to_probs.items():
kc_to_probs.setdefault(kc, []).append(probs)
# Plot curves for most common KCs
common_kcs = [kv[0] for kv in sorted(kc_to_probs.items(), key=lambda kv: -len(kv[1]))]
for kc_idx, kc in enumerate(common_kcs[:15]):
prob_lists = kc_to_probs[kc]
if plot_deltas:
prob_lists = [[prob - probs[0] for prob in probs] for probs in prob_lists]
gt1_count = sum([len(probs) > 1 for probs in prob_lists])
lens = [len(probs) for probs in prob_lists]
print(f"{kc_idx} - {kc}: {len(prob_lists)} dialogues, >1 occurrence: {gt1_count}, avg len: {sum(lens) / len(lens):.2f}")
plt.rcParams["figure.figsize"] = (9, 6)
plt.rcParams["font.size"] = 28
if plot_means:
means = []
stds = []
for i in range(max(lens)):
cur_idx_probs = np.array([probs[i] for probs in prob_lists if i < len(probs)])
means.append(cur_idx_probs.mean())
stds.append(cur_idx_probs.std())
eb = plt.errorbar(np.arange(len(means)) + 1, means, yerr=stds, marker='o', linewidth=3, capsize=7, ecolor='black')
eb[-1][0].set_linestyle("--")
else:
for probs in prob_lists:
plt.plot(np.arange(len(probs)), probs)
plt.grid(True, which="major")
plt.axis([.5, 15.5, -.42, .42])
plt.xticks(np.arange(1, 16, 2))
plt.xlabel("KC Occurrence")
plt.ylabel("Change in KC Mastery")
# plt.title("\n".join(wrap(kc.split(";")[0], 70)), fontsize=24)
# plt.show()
plt.savefig(f"results/linear_kc_{args.dataset}_{kc_idx}{'_delta' if plot_deltas else ''}.png", dpi=300, bbox_inches="tight")
plt.close()
def analyze_qual_data(args):
df = pd.read_csv(get_qual_result_filename(args), dtype=str)
kc_to_labels = {}
for _, sample in df.iterrows():
if isinstance(sample["KCs"], float) or sample["KCs"] == "None":
continue
kcs = [kc[3:] for kc in sample["KCs"].split("\n")]
for kc in kcs:
kc_to_labels.setdefault(kc, []).append(sample["Correct"] == "true")
common_kcs = [kv[0] for kv in sorted(kc_to_labels.items(), key=lambda kv: -len(kv[1]))]
for kc in common_kcs[:20]:
print(f"{kc}: {np.mean(kc_to_labels[kc]):.2f}")
def visualize(args):
if args.dataset == "comta":
kc_info = {}
for fold in range(1, 6):
with open(get_kc_result_filename(args, fold)) as kc_file:
kc_info = {
**kc_info,
**json.load(kc_file)
}
else:
with open(get_kc_result_filename(args, get_default_fold(args))) as kc_file:
kc_info = json.load(kc_file)
# visualize_single(kc_info)
visualize_average(kc_info, args)