-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathST_LSTM.py
86 lines (63 loc) · 3.32 KB
/
ST_LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn import Parameter
import math
class SpatioTemporal_LSTM(nn.Module):
"""docstring for SpatioTemporal_LSTM"""
def __init__(self, hidden_size, input_size):
super(SpatioTemporal_LSTM, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.linear = nn.linear(self.input_size + self.hidden_size , 4*self.hidden_size)
# shape = [shape]
self.weight_xg = Parameter(torch.Tensor(shape))
self.weight_hg = Parameter(torch.Tensor(shape))
self.weight_xi = Parameter(torch.Tensor(shape))
self.weight_hi = Parameter(torch.Tensor(shape))
self.weight_xf = Parameter(torch.Tensor(shape))
self.weight_hf = Parameter(torch.Tensor(shape))
self.weight_xg_ = Parameter(torch.Tensor(shape))
self.weight_mg = Parameter(torch.Tensor(shape))
self.weight_xi_ = Parameter(torch.Tensor(shape))
self.weight_mi = Parameter(torch.Tensor(shape))
self.weight_xf_ = Parameter(torch.Tensor(shape))
self.weight_mf = Parameter(torch.Tensor(shape))
self.weight_xo = Parameter(torch.Tensor(shape))
self.weight_ho = Parameter(torch.Tensor(shape))
self.weight_co = Parameter(torch.Tensor(shape))
self.weight_mo = Parameter(torch.Tensor(shape))
self.weight_1x1 = Parameter(torch.Tensor(1,1))
if bias:
self.bias_g = Parameter(torch.Tensor(4 * hidden_size))
self.bias_i = Parameter(torch.Tensor(4 * hidden_size))
self.bias_f = Parameter(torch.Tensor(4 * hidden_size))
self.bias_g_ = Parameter(torch.Tensor(4 * hidden_size))
self.bias_i_ = Parameter(torch.Tensor(4 * hidden_size))
self.bias_f_ = Parameter(torch.Tensor(4 * hidden_size))
self.bias_o = Parameter(torch.Tensor(4 * hidden_size))
self._reset_parameters()
def _reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def _compute_cell(self, x, h, c, M):
g = torch.tanh(F.conv2d(x,self.weight_xg) + F.conv2d(h, self.weight_hg) + self.bias_g)
i = torch.sigmoid(F.conv2d(x, self.weight_xi) + F.conv2d(h, self.weight_hi) + self.bias_i)
f = torch.sigmoid(F.conv2d(x, self.weight_xf) + F.conv2d(h, self.weight_hf) + self.bias_f)
c = f*c + i*g
g_ = torch.tanh(F.conv2d(x,self.weight_xg_) + F.conv2d(M, self.weight_mg) + self.bias_g_)
i_ = torch.sigmoid(F.conv2d(x, self.weight_xi_) + F.conv2d(M, self.weight_mi) + self.bias_i_)
f = torch.sigmoid(F.conv2d(x, self.weight_xf_) + F.conv2d(M, self.weight_mf) + self.bias_f_)
M = f_*M + i_*g_
o = torch.sigmoid(F.conv2d(x, self.weight_xo) + F.conv2d(M, self.weight_mo) + F.conv2d(c, self.weight_co) + F.conv2d(h, self.weight_ho) + self.bias_o)
h = o * torch.tanh(F.conv2d(torch.cat((c,M), dim= ),self.weight_1x1))
return h,c,M
def forward(self,input_, state=None):
if state is None:
raise ValueError('nfnaiszfv vsknv')
h,c,M = state
cell_output = self._compute_cell(input_,h,c,M)
return cell_output