-
Notifications
You must be signed in to change notification settings - Fork 0
/
client.py
225 lines (194 loc) · 6.92 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""This simple script shows how to interact with an OpenAI-compatible server from a client."""
import argparse
from openai import OpenAI
import modal
class Colors:
"""ANSI color codes"""
GREEN = "\033[0;32m"
RED = "\033[0;31m"
BLUE = "\033[0;34m"
GRAY = "\033[0;90m"
BOLD = "\033[1m"
END = "\033[0m"
def get_completion(client, model_id, messages, args):
completion_args = {
"model": model_id,
"messages": messages,
"frequency_penalty": args.frequency_penalty,
"max_tokens": args.max_tokens,
"n": args.n,
"presence_penalty": args.presence_penalty,
"seed": args.seed,
"stream": args.stream,
"temperature": args.temperature,
"top_p": args.top_p,
}
completion_args = {k: v for k, v in completion_args.items() if v is not None}
try:
response = client.chat.completions.create(**completion_args)
return response
except Exception as e:
print(Colors.RED, f"Error during API call: {e}", Colors.END, sep="")
return None
def main():
parser = argparse.ArgumentParser(description="OpenAI Client CLI")
parser.add_argument(
"--model",
type=str,
default=None,
help="The model to use for completion, defaults to the first available model",
)
parser.add_argument(
"--workspace",
type=str,
default=None,
help="The workspace where the LLM server app is hosted, defaults to your current Modal workspace",
)
parser.add_argument(
"--app-name",
type=str,
default="example-vllm-openai-compatible",
help="A Modal App serving an OpenAI-compatible API",
)
parser.add_argument(
"--function-name",
type=str,
default="serve",
help="A Modal Function serving an OpenAI-compatible API. Append `-dev` to use a `modal serve`d Function.",
)
parser.add_argument(
"--api-key",
type=str,
default="super-secret-token",
help="The API key to use for authentication, set in your api.py",
)
# Completion parameters
parser.add_argument("--max-tokens", type=int, default=None)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--top-p", type=float, default=0.9)
parser.add_argument("--top-k", type=int, default=0)
parser.add_argument("--frequency-penalty", type=float, default=0)
parser.add_argument("--presence-penalty", type=float, default=0)
parser.add_argument(
"--n",
type=int,
default=1,
help="Number of completions to generate. Streaming and chat mode only support n=1.",
)
# parser.add_argument("--stop", type=str, default=None)
parser.add_argument("--seed", type=int, default=None)
# Prompting
parser.add_argument(
"--prompt",
type=str,
default="Compose a limerick about baboons and racoons.",
help="The user prompt for the chat completion",
)
parser.add_argument(
"--system-prompt",
type=str,
default="You are a poetic assistant, skilled in writing satirical doggerel with creative flair.",
help="The system prompt for the chat completion",
)
# UI options
parser.add_argument(
"--no-stream",
dest="stream",
action="store_false",
help="Disable streaming of response chunks",
)
parser.add_argument(
"--chat", action="store_true", help="Enable interactive chat mode"
)
args = parser.parse_args()
client = OpenAI(api_key=args.api_key)
workspace = args.workspace or modal.config._profile
client.base_url = (
f"https://{workspace}--{args.app_name}-{args.function_name}.modal.run/v1"
)
if args.model:
model_id = args.model
print(
Colors.BOLD,
f"🧠: Using model {model_id}. This may trigger a model load on first call!",
Colors.END,
sep="",
)
else:
print(
Colors.BOLD,
f"🔎: Looking up available models on server at {client.base_url}. This may trigger a model load!",
Colors.END,
sep="",
)
model = client.models.list().data[0]
model_id = model.id
print(
Colors.BOLD,
f"🧠: Using {model_id}",
Colors.END,
sep="",
)
messages = [
{
"role": "system",
"content": args.system_prompt,
}
]
print(Colors.BOLD + "🧠: Using system prompt: " + args.system_prompt + Colors.END)
if args.chat:
print(
Colors.GREEN
+ Colors.BOLD
+ "\nEntering chat mode. Type 'bye' to end the conversation."
+ Colors.END
)
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["bye"]:
break
MAX_HISTORY = 10
if len(messages) > MAX_HISTORY:
messages = messages[:1] + messages[-MAX_HISTORY + 1 :]
messages.append({"role": "user", "content": user_input})
response = get_completion(client, model_id, messages, args)
if response:
if args.stream:
# only stream assuming n=1
print(Colors.BLUE + "\n🤖: ", end="")
assistant_message = ""
for chunk in response:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
print(content, end="")
assistant_message += content
print(Colors.END)
else:
assistant_message = response.choices[0].message.content
print(
Colors.BLUE + "\n🤖:" + assistant_message + Colors.END,
sep="",
)
messages.append({"role": "assistant", "content": assistant_message})
else:
messages.append({"role": "user", "content": args.prompt})
print(Colors.GREEN + f"\nYou: {args.prompt}" + Colors.END)
response = get_completion(client, model_id, messages, args)
if response:
if args.stream:
print(Colors.BLUE + "\n🤖:", end="")
for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="")
print(Colors.END)
else:
# only case where multiple completions are returned
for i, response in enumerate(response.choices):
print(
Colors.BLUE
+ f"\n🤖 Choice {i+1}:{response.message.content}"
+ Colors.END,
sep="",
)
if __name__ == "__main__":
main()